GEOGG142 GMES Calibration & validation of EO products
|
|
|
- Arleen Atkins
- 10 years ago
- Views:
Transcription
1 GEOGG142 GMES Calibration & validation of EO products Dr. Mat Disney Pearson Building room
2 Outline Calibration & validation Example: MODIS LAI and NPP products Meaning of parameters?? Time, space, measurements? Scaling? Good place to start: CEOS Working Group on Cal/Val, Land Product Validation sub-group: and see eg Biophysical & references therein: and good practice guidelines: CEOS_LAI_PROTOCOL_Aug2014_v2.0.1.pdf 2
3 Calibration & validation? Calibration: Process of adjusting empirical relationship between empirical estimates of biophysical parameter estimated from 2 (or more) sources e.g. ground-based and EO-derived LAI, or NDVI and LAI, or NDVI and fapar etc. etc. Local calibration to estimate fitting parameters (slope, intercept for a linear relationship) and uncertainty Limitations??? 3
4 Calibration & validation? Calibration: process of converting an instrument reading to a physically meaningful measurement Particularly radiometric calibration i.e. from DN to radiance measurement OR Process of adjusting empirical relationship between estimates of biophysical parameter estimated from 2 (or more) sources e.g. ground and EO-derived 4
5 Calibration & validation? Validation: experiments designed to verify instrument measurements using independent measurements Caveat: EO validation often means testing one model-derived estimate against another EO LAI, NPP etc. all require models Field estimates of LAI also require models i.e. NOT validation in true sense at all See later: when is LAI not LAI BUT: cal/val both essential to scientific remote sensing 5
6 Aside: focus on validation here but. Eg LAI CEOS WGCV: recommends CALIBRATION comparison between EO and ground-based NEEDS: reference estimates traceable to in situ measurements 3 sources available: 1. LAI measurements over individual Elementary Sampling Units (ESUs) 2. Spatially extensive LAI reference maps based on data driven relationships calibrated using ESU LAI 3. Spatially extensive LAI reference maps based on functional relationships calibrated using ESU LAI. And what is an ESU? See later 6
7 Validation example: MODIS NPP Productivity recap: Net Primary Productivity (NPP) annual net carbon exchange quantifies actual plant growth Conversion to biomass (woody, foliar, root) i.e. not just C0 2 fixation (GPP) NPP = GPP Ra (plant respiration) MODIS product example used here MOD17 GPP/NPP ATBD ntsg.umt.edu/mod17 Turner et al (2005) 7
8 Productivity recap GPP/NPP from MODIS Requirements? MOD17 ATBD Running et al. (2004) Turner et al. (2005) Zhao et al. (2005) Heinsch et a. (2006) 8
9 MODIS GPP/NPP + QC?? 9
10 MOD17 validation approach Need to address time (days to years) and space (local to global) Permanent network of ground validation sites Quantify seasonal and interannual dynamics of ecosystem activity (cover time domain) EO to quantify heterogeneity of biosphere Quantify land cover, land cover change dynamics Models to: Quantify, understand unmeasured ecosystem Provide predictive capability (in time AND space) 10
11 How on earth..???? can we validate an EO-derived estimate of something that depends on soil, climate, land cover etc.? Given that it requires various models to go from a satellite observation (radiance), to reflectance, to LAI/FAPAR, to PSN, to GPP to NPP At 500m-1km pixels. Globally. And how do you even measure NPP on the ground?? 11
12 So, how might we validate? Need to consider scale Relate measurements at the small scale to 1km pixels?? Flux tower approach Eg BIGFOOT approach, FLUXNET etc. Measurements and validation at many scales Models to bridge time/space scales (but how good are models?) Fig from MOD17 ATBD 12
13 Ecosystem measurements: FLUXNET Fig from MOD17 ATBD 13
14 Ecosystem measurements: FLUXNET
15 Ecosystem measurements: FLUXNET
16 Ecosystem measurements: FLUXNET 16
17 Ecosystem measurements: FLUXNET by biome Some distribution of biome types, but clearly biased in location Even considering only limited biomes 17
18 BigFoot approach to validating MODIS NPP E.g. Turner et al. (2005), 6 sites spanning range of vegetation and climate Crops, forest, tundra, grassland 5 x 5 km site at each plot (25 MODIS pixels) Flux tower & 100 (25x25m) sample plots within each area, seasonally measured for LAI and above-ground (A)NPP (from harvested leaf and wood material) Land cover from high res EO Use measured data at sample plots to calculate NPP, GPP Spatially distribute across site using (vegetation-calibrated) BiomeBGC model Requires daily met data, land cover, LAI Gives measured estimate from ground AND flux tower 18
19 BigFoot v flux tower GPP Turner et al. (2005) 19
20 BigFoot v MODIS GPP Not such good agreement as for flux tower (not surprisingly) Turner et al. (2005) 20
21 Comparison of MODIS NPP with flux data Differences due to Ra (autotrophic i.e. plant respiration)? PAR, VPD differences between those from DAO and actual? (VPD = deficit between the amount of moisture in the air and how much moisture the air can hold when it is saturated) Turner et al. (2005) 21
22 DAO PAR, VPD? Clearly some sites better agreement than others PAR generally good (relatively easy to measure) VPD less so e.g. SEVI (desert grassland site) VPD Other issues? Turner et al. (2005) 22
23 MODIS-estimated v BigFoot FPAR How do you measure FPAR even on the ground?? Requires models to interpret measurements of radiation Turner et al. (2005) 23
24 MODIS-estimated v BigFoot LUE (light use efficiency) LUE inferred from flux data Again, hard to even measure this on the ground.. Turner et al. (2005) 24
25 Zhao et al. (2005) Heinsch et al. (2006) 25
26 Process/SVAT (soil-veg-atm-transport) models Fig from MOD17 ATBD 26
27 Process models: how do we test/validate? From Running et al. (2004) MOD17 ATBD Biome-BGC model predicts the states and fluxes of water, carbon, and nitrogen in the system including vegetation, litter, soil, and the nearsurface atmosphere i.e. daily PSN 27
28 Process models: how do we test/validate? Fig from MOD17 ATBD 28
29 Data-Model Fusion [Using multiple streams of datasets with parameter optimization] C stock and flux measurements Inventory analyses Process-based information Climate data Remote sensing information CO 2 column from space Inverse modeling Process-based modeling Retrospective and forward analyses 29 Canadell et al. 2000
30 Multi-level model/data validation MOD17 ATBD: Synergy of various carbon measurement programs Fig from MOD17 ATBD 30
31 How do we decide on ground-based sampling strategy, scale? CEOS WGCV LPV: Elementary Sampling Units (ESUs). a contiguous spatial region over which the expected value of LAI can be estimated through in situ measurement corresponds to finest spatial scale of LAI estimates used for reference LAI maps. ESU size:.at least as large as one measurement footprint of the in situ instrument and typically includes a number of instrument measurements. ESU size: varies with surface condition, instrument field of view, illumination conditions (when transmission based measurements are used) and spatial sampling design. ESU size:.should be sufficient to allow repeat visit with minimum uncertainty due to changes in illumination or geolocation. 31
32 ESUs: CEOS WGCV LAI validation protocol 32
33 Summary Calibration Needed to allow comparison of data & products from multiple sensors & algorithms over time AND/OR to Can be done on-board, or via sensor intercomparison etc. Validation example: NPP Far removed from EO measurement & spatially, temporally variable Requires: observation networks over time and space and measurement of met. & biophysical data Models to interpolate spatially from ground-based, site-scale measurements Testing and intercomparison of models Ideally: optimal combinations of models + data across scales (e.g. via data assimilation) 33
34 References: NPP Running et al. (2004) A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production, Bioscience 54(6), Ganguly et al. (2008a, b) Generating vegetation leaf area index earth system data record from multiple Sensors, RSE, 112, (Part II) and (Part I) Turner et al. (2005) Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring, Glob Change Biol, 11, Zhao et al. (2005) Improvements of the MODIS terrestrial net and gross primary production data sets, RSE, 95, Heinsch et al. (2006) Evaluation of Remote Sensing Based Terrestrial Productivity From MODIS Using Regional Tower Eddy Flux Network Observations, IEEE TGRS, 44(7), General validation Morisette et al. (2002) A framework for the validation of MODIS Land products, RSE, 83, Disney et al. (2004) IJRS, 25(23),
35 Other cal/val links NPP: Cal/val programs CEOS-WFGCV (Committee on EO Working Group on Cal/ Val) SAFARI2000: VALERI: NCAVEO: JAXA: Etc etc etc 35
36 Example: MODIS core val sites Justice et al. (1998) Privette et al. (2002) and RSE 83, 1-2,
Integrated Global Carbon Observations. Beverly Law Prof. Global Change Forest Science Science Chair, AmeriFlux Network Oregon State University
Integrated Global Carbon Observations Beverly Law Prof. Global Change Forest Science Science Chair, AmeriFlux Network Oregon State University Total Anthropogenic Emissions 2008 Total Anthropogenic CO 2
Arturo Sanchez-Azofeifa, PhD, PEng Cassidy Rankine, Gilberto Zonta-Pastorello Centre for Earth Observation Sciences (CEOS) Earth and Atmospheric
Arturo Sanchez-Azofeifa, PhD, PEng Cassidy Rankine, Gilberto Zonta-Pastorello Centre for Earth Observation Sciences (CEOS) Earth and Atmospheric Sciences Department University of Alberta Microsoft WSN
Data Management Framework for the North American Carbon Program
Data Management Framework for the North American Carbon Program Bob Cook, Peter Thornton, and the Steering Committee Image courtesy of NASA/GSFC NACP Data Management Planning Workshop New Orleans, LA January
Using Remote Sensing to Monitor Soil Carbon Sequestration
Using Remote Sensing to Monitor Soil Carbon Sequestration E. Raymond Hunt, Jr. USDA-ARS Hydrology and Remote Sensing Beltsville Agricultural Research Center Beltsville, Maryland Introduction and Overview
Monitoring vegetation phenology at scales from individual plants to whole canopies, and from regions to continents: Insights from the PhenoCam network
Monitoring vegetation phenology at scales from individual plants to whole canopies, and from regions to continents: Insights from the PhenoCam network Andrew D. Richardson Harvard University Mark Friedl
Asia-Pacific Environmental Innovation Strategy (APEIS)
Asia-Pacific Environmental Innovation Strategy (APEIS) Integrated Environmental Monitoring IEM) Dust Storm Over-cultivation Desertification Urbanization Floods Deforestation Masataka WATANABE, National
THE ECOSYSTEM - Biomes
Biomes The Ecosystem - Biomes Side 2 THE ECOSYSTEM - Biomes By the end of this topic you should be able to:- SYLLABUS STATEMENT ASSESSMENT STATEMENT CHECK NOTES 2.4 BIOMES 2.4.1 Define the term biome.
Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images
Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University
Analysis of MODIS leaf area index product over soybean areas in Rio Grande do Sul State, Brazil
Analysis of MODIS leaf area index product over soybean areas in Rio Grande do Sul State, Brazil Rodrigo Rizzi 1 Bernardo Friedrich Theodor Rudorff 1 Yosio Edemir Shimabukuro 1 1 Instituto Nacional de Pesquisas
dynamic vegetation model to a semi-arid
Application of a conceptual distributed dynamic vegetation model to a semi-arid basin, SE of Spain By: M. Pasquato, C. Medici and F. Francés Universidad Politécnica de Valencia - Spain Research Institute
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
Update on EUMETSAT ocean colour services. Ewa J. Kwiatkowska
Update on EUMETSAT ocean colour services Ewa J. Kwiatkowska 1 st International Ocean Colour Science meeting, 6 8 May, 2013 EUMETSAT space data provider for operational oceanography Operational data provider
Introduction: Growth analysis and crop dry matter accumulation
PBIO*3110 Crop Physiology Lecture #2 Fall Semester 2008 Lecture Notes for Tuesday 9 September How is plant productivity measured? Introduction: Growth analysis and crop dry matter accumulation Learning
Australia s National Carbon Accounting System. Dr Gary Richards Director and Principal Scientist
Australia s National Carbon Accounting System Dr Gary Richards Director and Principal Scientist Government Commitment The Australian Government has committed to a 10 year, 3 phase, ~$35M program for a
5.5 QUALITY ASSURANCE AND QUALITY CONTROL
0 0 0. QUALITY ASSURANCE AND QUALITY CONTROL.. Introduction The IPCC Good Practice Guidance and Uncertainty Management (GPG000, IPCC, 000), Chapter, Quality Assurance and Quality Control, defines quality
Resolutions of Remote Sensing
Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how
Forest carbon sequestration and climate change. Dr Brian Tobin University College Dublin
Forest carbon sequestration and climate change Dr Brian Tobin University College Dublin Overview Sequestration what is it & why important? Role of forests in climate change CARBiFOR research project Forest
Data Processing Flow Chart
Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12
Technical paper. Summary
UNITED NATIONS Distr. GENERAL FCCC/TP/2009/1 31 May 2009 ENGLISH ONLY Cost of implementing methodologies and monitoring systems relating to estimates of emissions from deforestation and forest degradation,
Data Management for the North American Carbon Program
Image courtesy of NASA/GSFC Data Management for the North American Carbon Program Bob Cook, Eric Sundquist, Tom Boden,, and Peter Thornton RS in NACP Workshop Missoula, MT August 20, 2004 NACP Data and
LiDAR for vegetation applications
LiDAR for vegetation applications UoL MSc Remote Sensing Dr Lewis [email protected] Introduction Introduction to LiDAR RS for vegetation Review instruments and observational concepts Discuss applications
ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln
REMOTE SENSING (SATELLITE) SYSTEM TECHNOLOGIES Michael A. Okoye and Greg T. Earth Satellite Corporation, Rockville Maryland, USA Keywords: active microwave, advantages of satellite remote sensing, atmospheric
A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data
A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data S. W. Running,* D. D. Baldocchi, D. P. Turner, S. T. Gower, P. S. Bakwin, and
Lidar Remote Sensing for Forestry Applications
Lidar Remote Sensing for Forestry Applications Ralph O. Dubayah* and Jason B. Drake** Department of Geography, University of Maryland, College Park, MD 0 *[email protected] **[email protected] 1
Application of global 1-degree data sets to simulate runoff from MOPEX experimental river basins
18 Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment. IAHS Publ. 37, 26. Application of global 1-degree data sets to simulate from experimental
MOVING FORWARD WITH LIDAR REMOTE SENSING: AIRBORNE ASSESSMENT OF FOREST CANOPY PARAMETERS
MOVING FORWARD WITH LIDAR REMOTE SENSING: AIRBORNE ASSESSMENT OF FOREST CANOPY PARAMETERS Alicia M. Rutledge Sorin C. Popescu Spatial Sciences Laboratory Department of Forest Science Texas A&M University
Monitoring Overview with a Focus on Land Use Sustainability Metrics
Monitoring Overview with a Focus on Land Use Sustainability Metrics Canadian Roundtable for Sustainable Crops. Nov 26, 2014 Agriclimate, Geomatics, and Earth Observation Division (ACGEO). Presentation
II. Related Activities
(1) Global Cloud Resolving Model Simulations toward Numerical Weather Forecasting in the Tropics (FY2005-2010) (2) Scale Interaction and Large-Scale Variation of the Ocean Circulation (FY2006-2011) (3)
Testing steady states carbon stocks of Yasso07 and ROMUL models against soil inventory data in Finland
Testing steady states carbon stocks of Yasso07 and ROMUL models against soil inventory data in Finland A. Lehtonen 1, T. Linkosalo 2, J. Heikkinen 1, M. Peltoniemi 1, R. Sievänen 1, R. Mäkipää 1, P. Tamminen
Global environmental information Examples of EIS Data sets and applications
METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets
Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service
Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service Sergey BARTALEV and Evgeny LOUPIAN Space Research Institute, Russian Academy
GRADE 6 SCIENCE. Demonstrate a respect for all forms of life and a growing appreciation for the beauty and diversity of God s world.
GRADE 6 SCIENCE STRAND A Value and Attitudes Catholic Schools exist so that curriculum may be taught in the light of Gospel teachings. Teachers must reinforce Gospel truths and values so that students
CSS 560 Principles of Ecology for Environmental Educators
CSS 560 Principles of Ecology for Environmental Educators Journaling task (15:00 min/each) Draw a diagram that shows the major components (boxes) and interactions (arrows) of a terrestrial ecosystem Conceptual
Validating MOPITT Cloud Detection Techniques with MAS Images
Validating MOPITT Cloud Detection Techniques with MAS Images Daniel Ziskin, Juying Warner, Paul Bailey, John Gille National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 ABSTRACT The
http://www.isac.cnr.it/~ipwg/
The CGMS International Precipitation Working Group: Experience and Perspectives Vincenzo Levizzani CNR-ISAC, Bologna, Italy and Arnold Gruber NOAA/NESDIS & Univ. Maryland, College Park, MD, USA http://www.isac.cnr.it/~ipwg/
The NASA NEESPI Data Portal to Support Studies of Climate and Environmental Changes in Non-boreal Europe
The NASA NEESPI Data Portal to Support Studies of Climate and Environmental Changes in Non-boreal Europe Suhung Shen NASA Goddard Space Flight Center/George Mason University Gregory Leptoukh, Tatiana Loboda,
Review for Introduction to Remote Sensing: Science Concepts and Technology
Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director [email protected] Funded by National Science Foundation Advanced Technological Education program [DUE
Module EN: Developing a Reference Level for Carbon Stock Enhancements
USAID LEAF TECHNICAL GUIDANCE SERIES FOR THE DEVELOPMENT OF A FOREST CARBON MONITORING SYSTEM FOR REDD+ Module EN: Developing a Reference Level for Carbon Stock Enhancements USAID LEAF TECHNICAL GUIDANCE
NASA Earth System Science: Structure and data centers
SUPPLEMENT MATERIALS NASA Earth System Science: Structure and data centers NASA http://nasa.gov/ NASA Mission Directorates Aeronautics Research Exploration Systems Science http://nasascience.nasa.gov/
Measurements Of Pollution In The Troposphere (MOPITT) NASA Langley ASDC Data Collection Guide
Measurements Of Pollution In The Troposphere (MOPITT) NASA Langley ASDC Data Collection Guide Summary: The MOPITT data sets are designed to measure carbon monoxide (CO) and methane (CH 4 ) concentrations
INVESTIGA I+D+i 2013/2014
INVESTIGA I+D+i 2013/2014 SPECIFIC GUIDELINES ON AEROSPACE OBSERVATION OF EARTH Text by D. Eduardo de Miguel October, 2013 Introducction Earth observation is the use of remote sensing techniques to better
Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling
Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.
COTTON WATER RELATIONS
COTTON WATER RELATIONS Dan R. Krieg 1 INTRODUCTION Water is the most abundant substance on the Earth s surface and yet is the most limiting to maximum productivity of nearly all crop plants. Land plants,
Report of the technical assessment of the proposed forest reference emission level of Brazil submitted in 2014
United Nations FCCC/TAR/2014/BRA Distr.: General 1 December 2014 English only Report of the technical assessment of the proposed forest reference emission level of Brazil submitted in 2014 Summary This
STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product
STAR Algorithm and Data Products (ADP) Beta Review Suomi NPP Surface Reflectance IP ARP Product Alexei Lyapustin Surface Reflectance Cal Val Team 11/26/2012 STAR ADP Surface Reflectance ARP Team Member
Communities, Biomes, and Ecosystems
Communities, Biomes, and Ecosystems Before You Read Before you read the chapter, respond to these statements. 1. Write an A if you agree with the statement. 2. Write a D if you disagree with the statement.
Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability
Technology Implications of an Instrumented Planet presented at IFIP WG 10.4 Workshop on Challenges and Directions in Dependability Nick Bowen Colin Harrison IBM June 2008 1 Background Global Technology
National and Sub-national Carbon monitoring tools developed at the WHRC
National and Sub-national Carbon monitoring tools developed at the WHRC Nadine Laporte Woods Hole Research Center A. Baccini, W. Walker, S. Goetz, M. Sun, J. Kellndorfer Kigali, 20 th June 2011 Why measuring
Copernicus Atmosphere Monitoring Service (CAMS) Copernicus Climate Change Service (C3S)
Vincent-Henri Peuch ECMWF, Head of Copernicus Atmosphere Monitoring Service Copernicus Atmosphere Monitoring Service (CAMS) Copernicus Climate Change Service (C3S) European Centre for Medium-Range Weather
Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint
Climate Change and Renewable Energy A Perspective from a Measurements Viewpoint Regional Workshop on Metrology and Technology Challenges of Climate Change and Renewable Energy Guatemala City, Guatemala
Multi-scale upscaling approaches of soil properties from soil monitoring data
local scale landscape scale forest stand/ site level (management unit) Multi-scale upscaling approaches of soil properties from soil monitoring data sampling plot level Motivation: The Need for Regionalization
Saharan Dust Aerosols Detection Over the Region of Puerto Rico
1 Saharan Dust Aerosols Detection Over the Region of Puerto Rico ARLENYS RAMÍREZ University of Puerto Rico at Mayagüez, P.R., 00683. Email:[email protected] ABSTRACT. Every year during the months
Create Your Own Soil Profile Ac5vity
Create Your Own Soil Profile Ac5vity Middle School: 5-8 Task Overview: Soil profile refers to layers of soil. A typical soil profile takes nearly 1,000 to 100,000 years to form. The formation of the soil
Geospatial intelligence and data fusion techniques for sustainable development problems
Geospatial intelligence and data fusion techniques for sustainable development problems Nataliia Kussul 1,2, Andrii Shelestov 1,2,4, Ruslan Basarab 1,4, Sergii Skakun 1, Olga Kussul 2 and Mykola Lavreniuk
Terrestrial Carbon Sequestration Monitoring Networks and Demonstration Sites
Terrestrial Carbon Sequestration Monitoring Networks and Demonstration Sites Part II, Report to the Minnesota Department of Natural Resources From the Minnesota Terrestrial Carbon Sequestration Initiative
Welcome to NASA Applied Remote Sensing Training (ARSET) Webinar Series
Welcome to NASA Applied Remote Sensing Training (ARSET) Webinar Series Introduction to Remote Sensing Data for Water Resources Management Course Dates: October 17, 24, 31 November 7, 14 Time: 8-9 a.m.
AmeriFlux Site and Data Exploration System
AmeriFlux Site and Data Exploration System Misha Krassovski, Tom Boden, Bai Yang, Barbara Jackson CDIAC: Carbon Dioxide Information and Analysis Center CDIAC: Carbon Dioxide Information Analysis Center
User Perspectives on Project Feasibility Data
User Perspectives on Project Feasibility Data Marcel Šúri Tomáš Cebecauer GeoModel Solar s.r.o., Bratislava, Slovakia [email protected] http://geomodelsolar.eu http://solargis.info Solar Resources
Global LAnd Surface Satellite (GLASS) Products: Characteristics and Preliminary Applications. Shunlin Liang & GLASS data production team
Global LAnd Surface Satellite (GLASS) Products: Characteristics and Preliminary Applications Shunlin Liang & GLASS data production team University of Maryland and Beijing Normal University GV2M, Avignon,
Analysis of Climatic and Environmental Changes Using CLEARS Web-GIS Information-Computational System: Siberia Case Study
Analysis of Climatic and Environmental Changes Using CLEARS Web-GIS Information-Computational System: Siberia Case Study A G Titov 1,2, E P Gordov 1,2, I G Okladnikov 1,2, T M Shulgina 1 1 Institute of
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
Sintermann discussion measurement of ammonia emission from field-applied manure
Sintermann discussion measurement of ammonia emission from field-applied manure Jan Huijsmans, Julio Mosquera and Arjan Hensen 9 April 2013 During the1990 s the measurement methods for ammonia (NH 3 )
Need for up-to-date data to support inventory compilers in implementing IPCC methodologies to estimate emissions and removals for AFOLU Sector
Task Force on National Greenhouse Gas Inventories Need for up-to-date data to support inventory compilers in implementing IPCC methodologies to estimate emissions and removals for AFOLU Sector Joint FAO-IPCC-IFAD
Digital image processing
746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common
GCOS science conference, 2 Mar. 2016, Amsterdam. Japan Meteorological Agency (JMA)
GCOS science conference, 2 Mar. 2016, Amsterdam Status of Surface Radiation Budget Observation for Climate Nozomu Ohkawara Japan Meteorological Agency (JMA) Contents 1. Background 2. Status t of surface
Jeongho SEO, Kyeonghak LEE, Raehyun KIM Korea Forest Research Institute. 6~8. Sept. 2007 Kuala Lumpur, Malaysia
5 th Workshop on GHG Inventory in Asia Jeongho SEO, Kyeonghak LEE, Raehyun KIM Korea Forest Research Institute 6~8. Sept. 2007 Kuala Lumpur, Malaysia Contents 1/ 32 Background 2/ 32 Land Use and Forestry
- 1 - BISC 367 Plant Physiology Laboratory SFU
- 1 - BISC 367 Plant Physiology Laboratory SFU CO 2 exchange in plants The effect of light intensity and quality on photosynthetic CO 2 fixation and respiration in C3 and C4 plants Using light energy and
Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011
Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011 HEALTH Kindergarten: Grade 1: Grade 2: Know that litter can spoil the environment. Grade 3: Grade 4:
National Inventory of Landscapes in Sweden
Key messages Approaching the landscape perspective in monitoring experiences in the Swedish NILS program Johan Svensson, Future Forest Monitoring, 091112 Landscape level approaches are necessary to deal
Plants, like all other living organisms have basic needs: a source of nutrition (food),
LEARNING FROM LEAVES: A LOOK AT LEAF SIZE Grades 3 6 I. Introduction Plants, like all other living organisms have basic needs: a source of nutrition (food), water, space in which to live, air, and optimal
Model-based Synthesis. Tony O Hagan
Model-based Synthesis Tony O Hagan Stochastic models Synthesising evidence through a statistical model 2 Evidence Synthesis (Session 3), Helsinki, 28/10/11 Graphical modelling The kinds of models that
ICSU/WMO World Data Center for Remote Sensing of the Atmosphere (WDC RSAT)
ICSU/WMO World Data Center for Remote Sensing of the Atmosphere (WDC RSAT) Beate Hildenbrand (et al.) German Aerospace Center (DLR) GAW 2009, Geneva, 05 07 May 2009 http://wdc.dlr.de WDC RSAT overview
Life Cycle Of A Plant Population
Life Cycle Of A Plant Population Seed Rain n=3 Growth And Mortality n=7 Seedling Cohort n=22 Environmental Sieve Seed Bank n=5 Copyright G. Bonan 22 Suvivorship Of Seedlings In A Northern Hardwood Forest
Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon
Supporting Online Material for Koren et al. Measurement of the effect of biomass burning aerosol on inhibition of cloud formation over the Amazon 1. MODIS new cloud detection algorithm The operational
