Analecta Vol. 8, No. 2 ISSN
|
|
|
- Marion Anthony
- 10 years ago
- Views:
Transcription
1 EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary, ABSTRACT Artificial Neural Networks along with Image Processing Systems have proven to be successful, particularly in the domains of mathematics, science and technology. They have gained quite notable advantages beyond classical learning, as their usable engagement are observable in many fields of scientific environment related to the relevant systems. This paper presents a model for identifying the small components parts. The model may be significant in various industries mainly in engineering processing system areas. The objective of the study is to apply Artificial Neural Networks (ANN) in Image Processing System (IPS) with feed forward structure to detect, and recognize different parts or any other environment products on a moving conveyor bel. In the proposed model, we have used appropriate method of edge detection. The edge detection realizes artificial neural network with noise. The paper emphasizes the implementation of the model considering functionality, parts images, accurate detection and identifying the different components. The result shows that the model can detect moving objects (products of many kinds) accurately on the conveyor belt with very high success rate and sort them accordingly for further processes. Keywords: process engineering, model, ANN, detection, products. 1. INTRODUCTION Recognition is the classical problem in image processing, and machine vision. It is related to the determination of the image, which contains some specific objects, features, or activities. This operation can normally be solved robustly and without effort of a human, but is still not satisfactorily solved in machine vision for the general case, involving arbitrary objects in arbitrary situations. The existing methods for dealing with this task can solve it only for specific objects, such as simple geometric objects, human faces, printed or hand written characters. Furthermore in specific situations, typically described in terms of welldefined illumination, background, and pose of the object relative to the camera, [1, 2] and [6, 8]. Artificial Neural Network (ANN), as a problem-solving tool, which imitates the process of human brain reactions has become an alternative method to recognize an image through training, [7]. MATLAB is the abbreviation of matrix laboratory, which has several hundred built-in functions packages and thirty kinds of tool kits. Many design, training and simulation functions of the Neural Network (NN) are provided in a NN toolbox. In this paper, we have used the MATLAB ANN Toolbox with Levenberg-Marquardt (LM) algorithm; and Feed Forward architecture. In ANN training process, the LM training function has less iteration than traditional Back Propagation (BP) and other improved algorithms while the convergence rate is faster and the precision is higher, [3, 4]. In feature extraction process, we extract five features for each object, [6, 7] and [10] to recognize objects. Proposed method uses lower inputs to ANN and tends to higher efficiency of vision system. This method is suitable for real time recognition systems compared with previous research; because we can get better iteration time, speed of belt conveyor and accuracy. At this paper, we have also examined our search only on a small belt conveyor in order to see how fast the image processing happens with the proposed application of model, because our further work may be on material handling of the small parts using the same procedure. 2. METHODOLOGY, HARDWARE AND SOFTWARE We have used a web-cam HD-6000 to capture the objects in conveyor belt. The captured image is processed by a program developed in C#. NET environment. Feed forward neural network algorithms implemented by MATLAB functions, sending the output signals to the microcontroller ATMMEGA8. This microcontroller, which is connected to a personal computer via Universal Serial Bus, orders a servo motor s angle of operation to differentiate the small components in separate places. As regards the software development framework, the first level in the machine vision is the image processing algorithm, [4, 8]. It would analyze and extract useful information from the image. The model of software structure is shown in Fig
2 Figure 1. Software framework development structure 2.1. Second-Level Heading Images captured by web-cam are in the RGB (Red, Green, and Blue) format, and because we do not need color information, the image is converted into grayscale color map. Using the adaptive threshold algorithm, the image is changed into binary form, which is suitable for further recognizing process, [2, 4] and [8] Image Pre-Processing The aim of the pre-processing is to make the blurred images become clear. Median filtering method can preserve edges and makes the noise out away, thus the image can be recovered well, [5, 9]. Median filtering, which can effectively suppress noise, is a nonlinear signal processing technology based on the sorting statistical theory. The method replaces the value of a pixel by the median of the gray levels in the neighborhood of that pixel. We usually use image sharpening treatment based on Laplace method in time domain. After pre-processing, the quality of image is improved significantly Morphological Operations After pre-processing phase, in order to connect interrupted lines, we apply mathematical morphology dilation command. After this process, we clear the holes in image and eliminate noise coming from the outside line of the conveyor belt, [5, 9] Edge Detection and Feature Extraction Image which is processed by the first order differential equation usually produce relatively wide edge, so we use the gradient method based on the first derivative to enhance the edge of image. The approximate gradient of the image f(x, y) is: The above equation can be described by 3 3 filter mask shown in Fig. 2, and the approximate result is: In the above equation, we can find that the difference between the third row and first row is close to the differential in the x-direction, and the difference between the third column and first row is close to the differential in the y-direction, this can be expressed by 3 3 mask matrix illustrated in Fig. 3, where mask is called Sobel operator, [6-7]. After treatment by Sobel operator mask, the edge of image will be significantly more intuitive and the processed image is conducive to feature extraction. (1) (2) 29
3 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 Figure 2. Filter mask structure [3 3] Figure 3. Sobel operator filter mask (left for vertical and right for horizontal edge detection) Edge detection is done by using the Sobel operator to show the second shape of the object, [6-7]. After that we can extract two other features from object. If we calculate count of white pixels in image, we can define second feature as PERIMETER, also by dividing area to perimeter we obtain third feature for objects. Then we define two other parameters as length and width by using length and width of detected object Neural Network Architecture ANN has a multi- layers perceptron structure, which uses feed forward back propagation neural network. This structure has one input layer, one or more hidden layers and one output layer. The information enters to input layer and after manipulation is sent to output layers, [9, 3]. The back-propagation algorithm uses the gradient of the performance function to determine how to adjust the weights to minimize errors that affect performance. In this paper, the activation function of each node uses a sigmoid function, f (x) = 1/ (1+ e x). Sigmoid function generates values between (0, 1), so values are normalized before input the network and reduced between (0, 1). Feed forward training and application is shown in Fig. 4. We define an input vector of size 1*5 for neural network features generated in image processing phase. We tested some structures for our network by some parameters shown in Tab. 1. According to this table the obtained result achieved in method No. 9, by Mean Squared Error MSE = e-12. Fig. 5 shows the training results obtained from Tab
4 Figure 4.Training and application flowchart of Neural Network Table 1. The heuristic results for different hidden layers and activation functions Method Hidden Neurons Activation Functions Iterat MSE Layers ion tansig- purelin tansig- purelin tansig- purelin tansig- purelin tansig- purelin e tansig- purelin tansig-tansig-purelin e tansig-tansig-purelin * tansig-tansig-purelin e tansig-tansig-purelin e tansig-tansig-purelin e tansig-tansig-purelin e logsig-tansig e logsig-logsig purelin - logsig e-10 31
5 Mean Squared Error (mse) 10 0 Best Validation Performance is e-013 at epoch Train Validation Test Best RESULT AND EVALUATION Epochs Figure 5. Output results of neural network training Several researchers have used image-processing techniques for object recognition. A series of morphological operations were implemented to produce only an image of nutmeat from an image containing a number of nuts. Color segmentation to locate and remove the long stems attached to mechanically harvested oranges. Their color segmentation algorithm had 100% success in discriminating the stemmed oranges. However, the algorithm misclassified some pixels of the stem-calyx as background. Some scientists used color machine vision for the detection of weeds in wheat and soybean fields. They used a color index for both the preprocessing and statistical analysis for weed detection. Their experiments worked well with statistical analysis compared to the two neural networks they trained. Rapid identification of objects with different features, materials and weight and color may be another important use of artificial intelligence and image processing system in recycling processing systems. This experimental work at this study shows satisfactory results as compared to the standard Artificial Neural Network technique while maintaining same threshold error and a good processing speed-up in terms of success rate, speed of conveyor belt, and types of machine tools. The success rate is quite good at 10 cm/second for fixed speed of conveyor belt. This success rate with reference to literature used at this study, it is not a very bad result. But from author s point of view, a very satisfactory achievement might be performed in a place where there are no much fluorescent lighting, which of course increase the result ratio. The accepted and suitable results may obtain in an actual work place with its own conditions. In other word the correct and reasonable experimental test must be performed in an arbitrary place with arbitrary products of any kind. Then this paper might be evaluated to achieve the mentioned arbitrary materials with different colors, size, shape and features. 4. CONCLUSION This paper focuses on the recognition system of small component parts like (machine tools) on a moving belt conveyor in real time. Mathematical analysis shows that edge detection is realized using artificial neural network (ANN) with noise. Supervised learning method with momentum is used. Laplacian edge detector is a teacher of artificial neural network. In this study, it is shown that Laplacian edge method can be used for training of ANN as edge detector. Testing is done using a real-time visual recognition system. 32
6 The MATLAB software is used to integrate all algorithms (developed from image processing algorithms and ANN supervised learning method). Concerning the edge detection, some tools were used as extracted features. REFERENCES [1] R. Mattone et al, 2000, Sorting of Items on a Moving Conveyor Belt, Part 1: A technique for detecting and classifying objects. Robot Comput Integr Manuf, pp. 16: [2] H. Isil Bozma et al, 2002, Visual Processing and Classification of Items on a Moving Conveyor, a selective perception approaches. Robot Comput Integr Manuf; 18(2), pp [3] EN. Malamas et al, 2003, A Survey on Industrial Vision Systems, applications, pp [4] H. Golnabi et al, 2007, Design and application of industrial machine vision systems, Robot Compute Integr Manuf, 23(6), pp [5] H. Akbar et al, 2008, Image processing algorithm in machine vision approach for industrial inspection, in Proc. the 1st Makassar International Conference on Electrical Engineering and Informatics (MICEEI'08), pp [6] A. Prabuwono et al, 2009, PC based weight scale system with load cell for product inspection, in Proc. International Conference on Computer Engineering and Technology (ICCET'09), pp [7] Z. Zhao et al, 2010, Application and Comparison of BP Neural Network Algorithm in MATLAB, in Proc. International Conference on Measuring Technology and Mechatronics Automation, pp [8] I. Topalova et al, 2010, Increasing the Image Recognition Accuracy In Machine Vision Systems with Added Noise due to Technological Issues, IEEE 26-th Convention of Electrical and Electronics Engineers, pp [9] T. Muhammad et al, 2011, Recognition of Bolt and Nut using Artificial Neural Network, International Conference on Pattern Analysis and Intelligent Robotics, pp [10] Scavino et al. 2009, Application of automated image analysis to the identification and extraction of recyclable plastic bottles, Journal of Zhejiang University SCIENCE A, pp
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College
REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING
REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING Ms.PALLAVI CHOUDEKAR Ajay Kumar Garg Engineering College, Department of electrical and electronics Ms.SAYANTI BANERJEE Ajay Kumar Garg Engineering
Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski [email protected]
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski [email protected] Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
Face Recognition For Remote Database Backup System
Face Recognition For Remote Database Backup System Aniza Mohamed Din, Faudziah Ahmad, Mohamad Farhan Mohamad Mohsin, Ku Ruhana Ku-Mahamud, Mustafa Mufawak Theab 2 Graduate Department of Computer Science,UUM
Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *
Send Orders for Reprints to [email protected] 766 The Open Electrical & Electronic Engineering Journal, 2014, 8, 766-771 Open Access Research on Application of Neural Network in Computer Network
Rapid Application Development for Machine Vision A New Approach
Rapid Application Development for Machine Vision A New Approach Introduction Converging technologies, such as the PCI-bus and Intel MMX, have created so much bandwidth and computing power that automation
Neural Network based Vehicle Classification for Intelligent Traffic Control
Neural Network based Vehicle Classification for Intelligent Traffic Control Saeid Fazli 1, Shahram Mohammadi 2, Morteza Rahmani 3 1,2,3 Electrical Engineering Department, Zanjan University, Zanjan, IRAN
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals
The Role of Size Normalization on the Recognition Rate of Handwritten Numerals Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y. Suen, Tien D. Bui Centre for Pattern Recognition and Machine Intelligence,
How To Use Neural Networks In Data Mining
International Journal of Electronics and Computer Science Engineering 1449 Available Online at www.ijecse.org ISSN- 2277-1956 Neural Networks in Data Mining Priyanka Gaur Department of Information and
Performance Evaluation of Artificial Neural. Networks for Spatial Data Analysis
Contemporary Engineering Sciences, Vol. 4, 2011, no. 4, 149-163 Performance Evaluation of Artificial Neural Networks for Spatial Data Analysis Akram A. Moustafa Department of Computer Science Al al-bayt
ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION
1 ARTIFICIAL INTELLIGENCE METHODS IN EARLY MANUFACTURING TIME ESTIMATION B. Mikó PhD, Z-Form Tool Manufacturing and Application Ltd H-1082. Budapest, Asztalos S. u 4. Tel: (1) 477 1016, e-mail: [email protected]
Morphological segmentation of histology cell images
Morphological segmentation of histology cell images A.Nedzved, S.Ablameyko, I.Pitas Institute of Engineering Cybernetics of the National Academy of Sciences Surganova, 6, 00 Minsk, Belarus E-mail [email protected]
Performance Evaluation On Human Resource Management Of China S Commercial Banks Based On Improved Bp Neural Networks
Performance Evaluation On Human Resource Management Of China S *1 Honglei Zhang, 2 Wenshan Yuan, 1 Hua Jiang 1 School of Economics and Management, Hebei University of Engineering, Handan 056038, P. R.
Online Tuning of Artificial Neural Networks for Induction Motor Control
Online Tuning of Artificial Neural Networks for Induction Motor Control A THESIS Submitted by RAMA KRISHNA MAYIRI (M060156EE) In partial fulfillment of the requirements for the award of the Degree of MASTER
Mouse Control using a Web Camera based on Colour Detection
Mouse Control using a Web Camera based on Colour Detection Abhik Banerjee 1, Abhirup Ghosh 2, Koustuvmoni Bharadwaj 3, Hemanta Saikia 4 1, 2, 3, 4 Department of Electronics & Communication Engineering,
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS
COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT
Neural network software tool development: exploring programming language options
INEB- PSI Technical Report 2006-1 Neural network software tool development: exploring programming language options Alexandra Oliveira [email protected] Supervisor: Professor Joaquim Marques de Sá June 2006
Keywords: Image complexity, PSNR, Levenberg-Marquardt, Multi-layer neural network.
Global Journal of Computer Science and Technology Volume 11 Issue 3 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172
Application of Neural Network in User Authentication for Smart Home System
Application of Neural Network in User Authentication for Smart Home System A. Joseph, D.B.L. Bong, D.A.A. Mat Abstract Security has been an important issue and concern in the smart home systems. Smart
Building an Advanced Invariant Real-Time Human Tracking System
UDC 004.41 Building an Advanced Invariant Real-Time Human Tracking System Fayez Idris 1, Mazen Abu_Zaher 2, Rashad J. Rasras 3, and Ibrahiem M. M. El Emary 4 1 School of Informatics and Computing, German-Jordanian
Appendices. Appendix A: List of Publications
Appendices Appendix A: List of Publications The following papers highlight the findings of this research. These articles were published in reputed journals during the course of this research program. 1.
LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK
vii LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK LIST OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF NOTATIONS LIST OF ABBREVIATIONS LIST OF APPENDICES
An Approach for Utility Pole Recognition in Real Conditions
6th Pacific-Rim Symposium on Image and Video Technology 1st PSIVT Workshop on Quality Assessment and Control by Image and Video Analysis An Approach for Utility Pole Recognition in Real Conditions Barranco
CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER
93 CHAPTER 5 PREDICTIVE MODELING STUDIES TO DETERMINE THE CONVEYING VELOCITY OF PARTS ON VIBRATORY FEEDER 5.1 INTRODUCTION The development of an active trap based feeder for handling brakeliners was discussed
Automatic Traffic Estimation Using Image Processing
Automatic Traffic Estimation Using Image Processing Pejman Niksaz Science &Research Branch, Azad University of Yazd, Iran [email protected] Abstract As we know the population of city and number of
Digital image processing
746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common
SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS
UDC: 004.8 Original scientific paper SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS Tonimir Kišasondi, Alen Lovren i University of Zagreb, Faculty of Organization and Informatics,
Circle Object Recognition Based on Monocular Vision for Home Security Robot
Journal of Applied Science and Engineering, Vol. 16, No. 3, pp. 261 268 (2013) DOI: 10.6180/jase.2013.16.3.05 Circle Object Recognition Based on Monocular Vision for Home Security Robot Shih-An Li, Ching-Chang
Canny Edge Detection
Canny Edge Detection 09gr820 March 23, 2009 1 Introduction The purpose of edge detection in general is to significantly reduce the amount of data in an image, while preserving the structural properties
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches
Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic
How To Filter Spam Image From A Picture By Color Or Color
Image Content-Based Email Spam Image Filtering Jianyi Wang and Kazuki Katagishi Abstract With the population of Internet around the world, email has become one of the main methods of communication among
Power Prediction Analysis using Artificial Neural Network in MS Excel
Power Prediction Analysis using Artificial Neural Network in MS Excel NURHASHINMAH MAHAMAD, MUHAMAD KAMAL B. MOHAMMED AMIN Electronic System Engineering Department Malaysia Japan International Institute
DIAGONAL BASED FEATURE EXTRACTION FOR HANDWRITTEN ALPHABETS RECOGNITION SYSTEM USING NEURAL NETWORK
DIAGONAL BASED FEATURE EXTRACTION FOR HANDWRITTEN ALPHABETS RECOGNITION SYSTEM USING NEURAL NETWORK J.Pradeep 1, E.Srinivasan 2 and S.Himavathi 3 1,2 Department of ECE, Pondicherry College Engineering,
Neural Networks and Back Propagation Algorithm
Neural Networks and Back Propagation Algorithm Mirza Cilimkovic Institute of Technology Blanchardstown Blanchardstown Road North Dublin 15 Ireland [email protected] Abstract Neural Networks (NN) are important
Comparison of K-means and Backpropagation Data Mining Algorithms
Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and
Virtual Mouse Using a Webcam
1. INTRODUCTION Virtual Mouse Using a Webcam Since the computer technology continues to grow up, the importance of human computer interaction is enormously increasing. Nowadays most of the mobile devices
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL G. Maria Priscilla 1 and C. P. Sumathi 2 1 S.N.R. Sons College (Autonomous), Coimbatore, India 2 SDNB Vaishnav College
Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승
Feed-Forward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Trade-off between energy consumption and wiring cost Trade-off between energy consumption
Algorithm for License Plate Localization and Recognition for Tanzania Car Plate Numbers
Algorithm for License Plate Localization and Recognition for Tanzania Car Plate Numbers Isack Bulugu Department of Electronics Engineering, Tianjin University of Technology and Education, Tianjin, P.R.
Price Prediction of Share Market using Artificial Neural Network (ANN)
Prediction of Share Market using Artificial Neural Network (ANN) Zabir Haider Khan Department of CSE, SUST, Sylhet, Bangladesh Tasnim Sharmin Alin Department of CSE, SUST, Sylhet, Bangladesh Md. Akter
How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)
Big Data Analytics Using Neural networks
San José State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research 4-1-2014 Big Data Analytics Using Neural networks Follow this and additional works at: http://scholarworks.sjsu.edu/etd_projects
Neural Networks and Support Vector Machines
INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS
FRAUD DETECTION IN ELECTRIC POWER DISTRIBUTION NETWORKS USING AN ANN-BASED KNOWLEDGE-DISCOVERY PROCESS Breno C. Costa, Bruno. L. A. Alberto, André M. Portela, W. Maduro, Esdras O. Eler PDITec, Belo Horizonte,
Poker Vision: Playing Cards and Chips Identification based on Image Processing
Poker Vision: Playing Cards and Chips Identification based on Image Processing Paulo Martins 1, Luís Paulo Reis 2, and Luís Teófilo 2 1 DEEC Electrical Engineering Department 2 LIACC Artificial Intelligence
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
A Content based Spam Filtering Using Optical Back Propagation Technique
A Content based Spam Filtering Using Optical Back Propagation Technique Sarab M. Hameed 1, Noor Alhuda J. Mohammed 2 Department of Computer Science, College of Science, University of Baghdad - Iraq ABSTRACT
Image Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
GLOVE-BASED GESTURE RECOGNITION SYSTEM
CLAWAR 2012 Proceedings of the Fifteenth International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Baltimore, MD, USA, 23 26 July 2012 747 GLOVE-BASED GESTURE
Visual Structure Analysis of Flow Charts in Patent Images
Visual Structure Analysis of Flow Charts in Patent Images Roland Mörzinger, René Schuster, András Horti, and Georg Thallinger JOANNEUM RESEARCH Forschungsgesellschaft mbh DIGITAL - Institute for Information
Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network
Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Qian Wu, Yahui Wang, Long Zhang and Li Shen Abstract Building electrical system fault diagnosis is the
Neural Network Design in Cloud Computing
International Journal of Computer Trends and Technology- volume4issue2-2013 ABSTRACT: Neural Network Design in Cloud Computing B.Rajkumar #1,T.Gopikiran #2,S.Satyanarayana *3 #1,#2Department of Computer
PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY
PHOTOGRAMMETRIC TECHNIQUES FOR MEASUREMENTS IN WOODWORKING INDUSTRY V. Knyaz a, *, Yu. Visilter, S. Zheltov a State Research Institute for Aviation System (GosNIIAS), 7, Victorenko str., Moscow, Russia
International Journal of Advanced Information in Arts, Science & Management Vol.2, No.2, December 2014
Efficient Attendance Management System Using Face Detection and Recognition Arun.A.V, Bhatath.S, Chethan.N, Manmohan.C.M, Hamsaveni M Department of Computer Science and Engineering, Vidya Vardhaka College
6.2.8 Neural networks for data mining
6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,
A Study of Automatic License Plate Recognition Algorithms and Techniques
A Study of Automatic License Plate Recognition Algorithms and Techniques Nima Asadi Intelligent Embedded Systems Mälardalen University Västerås, Sweden [email protected] ABSTRACT One of the most
An Introduction to Neural Networks
An Introduction to Vincent Cheung Kevin Cannons Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner May 27,
ROBOTRACKER A SYSTEM FOR TRACKING MULTIPLE ROBOTS IN REAL TIME. by Alex Sirota, [email protected]
ROBOTRACKER A SYSTEM FOR TRACKING MULTIPLE ROBOTS IN REAL TIME by Alex Sirota, [email protected] Project in intelligent systems Computer Science Department Technion Israel Institute of Technology Under the
Electroencephalography Analysis Using Neural Network and Support Vector Machine during Sleep
Engineering, 23, 5, 88-92 doi:.4236/eng.23.55b8 Published Online May 23 (http://www.scirp.org/journal/eng) Electroencephalography Analysis Using Neural Network and Support Vector Machine during Sleep JeeEun
HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER
HSI BASED COLOUR IMAGE EQUALIZATION USING ITERATIVE n th ROOT AND n th POWER Gholamreza Anbarjafari icv Group, IMS Lab, Institute of Technology, University of Tartu, Tartu 50411, Estonia [email protected]
Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks
Method of Combining the Degrees of Similarity in Handwritten Signature Authentication Using Neural Networks Ph. D. Student, Eng. Eusebiu Marcu Abstract This paper introduces a new method of combining the
THE HUMAN BRAIN. observations and foundations
THE HUMAN BRAIN observations and foundations brains versus computers a typical brain contains something like 100 billion miniscule cells called neurons estimates go from about 50 billion to as many as
Forecasting the U.S. Stock Market via Levenberg-Marquardt and Haken Artificial Neural Networks Using ICA&PCA Pre-Processing Techniques
Forecasting the U.S. Stock Market via Levenberg-Marquardt and Haken Artificial Neural Networks Using ICA&PCA Pre-Processing Techniques Golovachev Sergey National Research University, Higher School of Economics,
High-Performance Signature Recognition Method using SVM
High-Performance Signature Recognition Method using SVM Saeid Fazli Research Institute of Modern Biological Techniques University of Zanjan Shima Pouyan Electrical Engineering Department University of
Automatic Extraction of Signatures from Bank Cheques and other Documents
Automatic Extraction of Signatures from Bank Cheques and other Documents Vamsi Krishna Madasu *, Mohd. Hafizuddin Mohd. Yusof, M. Hanmandlu ß, Kurt Kubik * *Intelligent Real-Time Imaging and Sensing group,
VIETNAM NATIONAL UNIVERSITY HOCHIMINH CITY INTERNATIONAL UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING SPEED LIMIT TRAFFIC SIGN DETECTION & RECOGNITION
VIETNAM NATIONAL UNIVERSITY HOCHIMINH CITY INTERNATIONAL UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING SPEED LIMIT TRAFFIC SIGN DETECTION & RECOGNITION By Nguyen Quang Do Advisor Dao Thi Phuong VIETNAM NATIONAL
An Algorithm for Classification of Five Types of Defects on Bare Printed Circuit Board
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 5, No. 3, July 2011 CSES International 2011 ISSN 0973-4406 An Algorithm for Classification of Five Types of Defects on Bare
Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture.
Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture. Chirag Gupta,Sumod Mohan K [email protected], [email protected] Abstract In this project we propose a method to improve
A simple application of Artificial Neural Network to cloud classification
A simple application of Artificial Neural Network to cloud classification Tianle Yuan For AOSC 630 (by Prof. Kalnay) Introduction to Pattern Recognition (PR) Example1: visual separation between the character
ANNMD - Artificial Neural Network Model Developer. Jure Smrekar
ANNMD - Artificial Neural Network Model Developer Jure Smrekar June 2010 University of Stavanger N-4036 Stavanger NORWAY wwwuisno 2010 Jure Smrekar ISBN: 978-82-7644-416-2 Abstract This booklet presents
STATIC SIGNATURE RECOGNITION SYSTEM FOR USER AUTHENTICATION BASED TWO LEVEL COG, HOUGH TRANSFORM AND NEURAL NETWORK
Volume 6, Issue 3, pp: 335343 IJESET STATIC SIGNATURE RECOGNITION SYSTEM FOR USER AUTHENTICATION BASED TWO LEVEL COG, HOUGH TRANSFORM AND NEURAL NETWORK Dipti Verma 1, Sipi Dubey 2 1 Department of Computer
Lecture 6. Artificial Neural Networks
Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm
Automatic Detection of PCB Defects
IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Automatic Detection of PCB Defects Ashish Singh PG Student Vimal H.
ScienceDirect. Brain Image Classification using Learning Machine Approach and Brain Structure Analysis
Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 50 (2015 ) 388 394 2nd International Symposium on Big Data and Cloud Computing (ISBCC 15) Brain Image Classification using
Bank Customers (Credit) Rating System Based On Expert System and ANN
Bank Customers (Credit) Rating System Based On Expert System and ANN Project Review Yingzhen Li Abstract The precise rating of customers has a decisive impact on loan business. We constructed the BP network,
MetaMorph Software Basic Analysis Guide The use of measurements and journals
MetaMorph Software Basic Analysis Guide The use of measurements and journals Version 1.0.2 1 Section I: How Measure Functions Operate... 3 1. Selected images... 3 2. Thresholding... 3 3. Regions of interest...
AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING
AN APPLICATION OF TIME SERIES ANALYSIS FOR WEATHER FORECASTING Abhishek Agrawal*, Vikas Kumar** 1,Ashish Pandey** 2,Imran Khan** 3 *(M. Tech Scholar, Department of Computer Science, Bhagwant University,
3D Scanner using Line Laser. 1. Introduction. 2. Theory
. Introduction 3D Scanner using Line Laser Di Lu Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute The goal of 3D reconstruction is to recover the 3D properties of a geometric
INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr.
INTELLIGENT ENERGY MANAGEMENT OF ELECTRICAL POWER SYSTEMS WITH DISTRIBUTED FEEDING ON THE BASIS OF FORECASTS OF DEMAND AND GENERATION Chr. Meisenbach M. Hable G. Winkler P. Meier Technology, Laboratory
A New Approach For Estimating Software Effort Using RBFN Network
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.7, July 008 37 A New Approach For Estimating Software Using RBFN Network Ch. Satyananda Reddy, P. Sankara Rao, KVSVN Raju,
Automatic License Plate Recognition using Python and OpenCV
Automatic License Plate Recognition using Python and OpenCV K.M. Sajjad Department of Computer Science and Engineering M.E.S. College of Engineering, Kuttippuram, Kerala [email protected] Abstract Automatic
Using MATLAB to Measure the Diameter of an Object within an Image
Using MATLAB to Measure the Diameter of an Object within an Image Keywords: MATLAB, Diameter, Image, Measure, Image Processing Toolbox Author: Matthew Wesolowski Date: November 14 th 2014 Executive Summary
A New Image Edge Detection Method using Quality-based Clustering. Bijay Neupane Zeyar Aung Wei Lee Woon. Technical Report DNA #2012-01.
A New Image Edge Detection Method using Quality-based Clustering Bijay Neupane Zeyar Aung Wei Lee Woon Technical Report DNA #2012-01 April 2012 Data & Network Analytics Research Group (DNA) Computing and
Predict Influencers in the Social Network
Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, [email protected] Department of Electrical Engineering, Stanford University Abstract Given two persons
Parallel Data Selection Based on Neurodynamic Optimization in the Era of Big Data
Parallel Data Selection Based on Neurodynamic Optimization in the Era of Big Data Jun Wang Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Shatin, New Territories,
Handwritten Digit Recognition with a Back-Propagation Network
396 Le Cun, Boser, Denker, Henderson, Howard, Hubbard and Jackel Handwritten Digit Recognition with a Back-Propagation Network Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
Signature Region of Interest using Auto cropping
ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 1 Signature Region of Interest using Auto cropping Bassam Al-Mahadeen 1, Mokhled S. AlTarawneh 2 and Islam H. AlTarawneh 2 1 Math. And Computer Department,
Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features
Remote Sensing and Geoinformation Lena Halounová, Editor not only for Scientific Cooperation EARSeL, 2011 Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with
Cash Forecasting: An Application of Artificial Neural Networks in Finance
International Journal of Computer Science & Applications Vol. III, No. I, pp. 61-77 2006 Technomathematics Research Foundation Cash Forecasting: An Application of Artificial Neural Networks in Finance
An Energy-Based Vehicle Tracking System using Principal Component Analysis and Unsupervised ART Network
Proceedings of the 8th WSEAS Int. Conf. on ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING & DATA BASES (AIKED '9) ISSN: 179-519 435 ISBN: 978-96-474-51-2 An Energy-Based Vehicle Tracking System using Principal
