Monitoring of Complex Industrial Processes based on Self-Organizing Maps and Watershed Transformations
|
|
|
- Sharon Copeland
- 10 years ago
- Views:
Transcription
1 Monitoring of Complex Industrial Processes based on Self-Organizing Maps and Watershed Transformations Christian W. Frey 2012
2 Monitoring of Complex Industrial Processes based on Self-Organizing Maps and Watershed Transformations 1. Motivation 2. Monitoring of Industrial Processes 3. Self-Organizing Maps 4. Demonstrator System at IOSB 5. Industrial Application PROCMON 6. Summary
3 1. Motivation Monitoring of complex Industrial Processes: Production processes in process industry are characterized by high complexity and system order Typically the production plants are equipped with a high number of sensors and actuators Distributed automation systems require a continuous and integral monitoring functionality to increase operational availability and cost effectiveness Online monitoring and diagnosis of the asset functionality Detection of process anomalies and component malfunctions Application-oriented visualization of the diagnosis information 3
4 2. Monitoring of Industrial Processes Model-Based Monitoring: Diagnosis of technical processes is performed by measuring the residual between the process model and the measured system states Analytical process models require a mathematical description of the process relations: Y (t) Comprehensive physical system knowledge is required and can be very expensive due to experimental investigations X (t) Process Model Y m(t) Highly complex processes e.g. chemical plants are difficult to describe by an analytical process model due to their high system order E (t) 4
5 2. Monitoring of Industrial Processes Model-Based Monitoring: Data-driven process modeling concepts can be applied to obtain model of the unknown system behavior: No mathematical description of the physical behavior Recorded input / output samples are used to induce an data-driven process model X (t) Y (t) Novelity Detection N (t) Machine learning algorithms are capable of modeling the input / output behavior based on training data For anomaly detection an multiple-input multiple-output model (MIMO) of the process is not required The measured system states only need to be classified with respect to their novelty 5
6 3. Self-Organizing Maps Topology Preserving Mapping: High dimensional input data is mapped topological ordered into a lower dimensional output space f : A n B, A R, B R m f f Similar input vectors are mapped topological close together and dissimilar apart Topology preserving concepts: Self Organizing Maps (SOM) Growing Grid / Neural Gas (GGRID) Generative Topographic Mapping (GTM) 6
7 3. Self-Organizing Maps Self-Organizing Maps (SOM): f f Self Organizing Maps developed by Teuvo Kohonen in 1989 The self-organizing map performs a topological mapping from a higher dimensional input space to a lower dimensional map space The map consists of neurons arranged in a defined topology (ring, toroid) No data connection between neurons the neurons are characterized by their position in the topology Each Neuron holds an prototype vector the dimensionality corresponds to the number of input signals 7
8 3. Self-Organizing Maps Self Organizing Maps (SOM): High dimensional input data is topological ordered by so called neighborhood function SOM forms a semantic map where similar input vectors are mapped topological close together and dissimilar apart Approximation quality of the map is calculated by the distance (e.g. Euclidian) between input vector and neuron vector (quantification error) d Input Vector Prototype Vector d l x, m x, m i j i m m,..., j 1 m jd x x,..., i 1 x id il jl 2 8
9 3. Self-Organizing Maps Unified-Distance-Matrix (UMatrix): UMatrix transformation adds a third dimension to the 2D map of the SOM which corresponds to the distance between the neighboring neurons Valleys (blue) in the UMatrix are clusters in the map where the stored prototype vectors are similar (specific process phases) Mountain Ridges (red) reflect the cluster boarders in the data set (transient phases) By analyzing the UMatrix: Detection of process phases and transient process phases BMU trajectory can be interpreted as process phase sequence 9
10 3. Self-Organizing Maps Unified-Distance-Matrix (UMatrix): UMatrix transformation adds a third dimension to the 2D map of the SOM which corresponds to the distance between the neighboring neurons Valleys (blue) in the UMatrix are clusters in the map where the stored prototype vectors are similar (specific process phases) Mountain Ridges (red) reflect the cluster boarders in the data set (transient phases) By analyzing the UMatrix: Detection of process phases and transient process phases BMU trajectory can be interpreted as process phase sequence 10
11 3. Self-Organizing Maps Unified-Distance-Matrix (UMatrix): UMatrix transformation adds a third dimension to the 2D map of the SOM which corresponds to the distance between the neighboring neurons Valleys (blue) in the UMatrix are clusters in the map where the stored prototype vectors are similar (specific process phases) Mountain Ridges (red) reflect the cluster boarders in the data set (transient phases) By analyzing the UMatrix: Detection of process phases and transient process phases BMU trajectory can be interpreted as process phase sequence 11
12 3. Self-Organizing Maps Watershed-Transformation : UMatrix representation holds information about the number of clusters and the cluster borders The Watershed-Transformation is capable of extracting the number of clusters and the cluster areas in the UMatrix The basic idea is to flood the UMatrix valleys the watershed lines corresponds to the cluster borders in the training data set By applying the Watershed Transformation: Process phases can be determined Process phase sequence can be monitored 12
13 4. Demonstrator System at IOSB 13
14 4. Demonstrator System at IOSB 14
15 4. Demonstrator System at IOSB 15
16 4. Demonstrator System at IOSB Prozessdaten Fehler 16
17 5. Industrial Application PROCMON Process and Condition Monitoring: Embedding of the monitoring functionalities in a software engine (PROCMON) Implementation in C++ with interfaces for: ANSI C++ Microsoft.NET3.5 /.NET4.0 32/64 BIT (C++/Cli, C#, VB) Matlab Implementation of standardized graphical user interface (GUI) for Microsoft operating systems (WIN32/64) 17
18 5. Industrial Application PROCMON Bayer Technology Services PuMon: Development of monitoring application for process industry in cooperation with Bayer Technology Services (BTS) Process-Unit-Monitoring (PUMon) functionality is optimized for monitoring of chemical and pharmaceutical production plants 18
19 5. Industrial Application PROCMON Monitoring of drinking water quality: 19
20 5. Industrial Application PROCMON Monitoring of wind power plants: P [MW] V [m/s] f1 [HZ] Error fn [HZ] 20
21 6. Summary Monitoring concept based on machine learning methods Appliance of self organizing maps for generating an data driven model of the physical process behavior Watershed algorithm for detecting automatically the typical process phases Verification of the concept by appliance to an chemical test plant Appliance of the diagnosis concept to a wide range of processes in process industry 21
Self-Organizing g Maps (SOM) COMP61021 Modelling and Visualization of High Dimensional Data
Self-Organizing g Maps (SOM) Ke Chen Outline Introduction ti Biological Motivation Kohonen SOM Learning Algorithm Visualization Method Examples Relevant Issues Conclusions 2 Introduction Self-organizing
Visualization of Breast Cancer Data by SOM Component Planes
International Journal of Science and Technology Volume 3 No. 2, February, 2014 Visualization of Breast Cancer Data by SOM Component Planes P.Venkatesan. 1, M.Mullai 2 1 Department of Statistics,NIRT(Indian
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization
A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization Ángela Blanco Universidad Pontificia de Salamanca [email protected] Spain Manuel Martín-Merino Universidad
Self Organizing Maps: Fundamentals
Self Organizing Maps: Fundamentals Introduction to Neural Networks : Lecture 16 John A. Bullinaria, 2004 1. What is a Self Organizing Map? 2. Topographic Maps 3. Setting up a Self Organizing Map 4. Kohonen
Reconstructing Self Organizing Maps as Spider Graphs for better visual interpretation of large unstructured datasets
Reconstructing Self Organizing Maps as Spider Graphs for better visual interpretation of large unstructured datasets Aaditya Prakash, Infosys Limited [email protected] Abstract--Self-Organizing
Data topology visualization for the Self-Organizing Map
Data topology visualization for the Self-Organizing Map Kadim Taşdemir and Erzsébet Merényi Rice University - Electrical & Computer Engineering 6100 Main Street, Houston, TX, 77005 - USA Abstract. The
CITY UNIVERSITY OF HONG KONG 香 港 城 市 大 學. Self-Organizing Map: Visualization and Data Handling 自 組 織 神 經 網 絡 : 可 視 化 和 數 據 處 理
CITY UNIVERSITY OF HONG KONG 香 港 城 市 大 學 Self-Organizing Map: Visualization and Data Handling 自 組 織 神 經 網 絡 : 可 視 化 和 數 據 處 理 Submitted to Department of Electronic Engineering 電 子 工 程 學 系 in Partial Fulfillment
Visualizing an Auto-Generated Topic Map
Visualizing an Auto-Generated Topic Map Nadine Amende 1, Stefan Groschupf 2 1 University Halle-Wittenberg, information manegement technology [email protected] 2 media style labs Halle Germany [email protected]
Fuel Cell Health Monitoring Using Self Organizing Maps
A publication of CHEMICAL ENGINEERINGTRANSACTIONS VOL. 33, 2013 Guest Editors: Enrico Zio, Piero Baraldi Copyright 2013, AIDIC ServiziS.r.l., ISBN 978-88-95608-24-2; ISSN 1974-9791 The Italian Association
USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS
USING SELF-ORGANIZING MAPS FOR INFORMATION VISUALIZATION AND KNOWLEDGE DISCOVERY IN COMPLEX GEOSPATIAL DATASETS Koua, E.L. International Institute for Geo-Information Science and Earth Observation (ITC).
LVQ Plug-In Algorithm for SQL Server
LVQ Plug-In Algorithm for SQL Server Licínia Pedro Monteiro Instituto Superior Técnico [email protected] I. Executive Summary In this Resume we describe a new functionality implemented
On the use of Three-dimensional Self-Organizing Maps for Visualizing Clusters in Geo-referenced Data
On the use of Three-dimensional Self-Organizing Maps for Visualizing Clusters in Geo-referenced Data Jorge M. L. Gorricha and Victor J. A. S. Lobo CINAV-Naval Research Center, Portuguese Naval Academy,
Self Organizing Maps for Visualization of Categories
Self Organizing Maps for Visualization of Categories Julian Szymański 1 and Włodzisław Duch 2,3 1 Department of Computer Systems Architecture, Gdańsk University of Technology, Poland, [email protected]
A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML
www.bsc.es A Case of Study on Hadoop Benchmark Behavior Modeling Using ALOJA-ML Josep Ll. Berral, Nicolas Poggi, David Carrera Workshop on Big Data Benchmarks Toronto, Canada 2015 1 Context ALOJA: framework
PRACTICAL DATA MINING IN A LARGE UTILITY COMPANY
QÜESTIIÓ, vol. 25, 3, p. 509-520, 2001 PRACTICAL DATA MINING IN A LARGE UTILITY COMPANY GEORGES HÉBRAIL We present in this paper the main applications of data mining techniques at Electricité de France,
Data Mining and Neural Networks in Stata
Data Mining and Neural Networks in Stata 2 nd Italian Stata Users Group Meeting Milano, 10 October 2005 Mario Lucchini e Maurizo Pisati Università di Milano-Bicocca [email protected] [email protected]
Neural networks and their rules for classification in marine geology
Neural networks and their rules for classification in marine geology Alfred Ultsch 1, Dieter Korus 2, Achim Wehrmann 3 Abstract Artificial neural networks are more and more used for classification. They
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL
MANAGING QUEUE STABILITY USING ART2 IN ACTIVE QUEUE MANAGEMENT FOR CONGESTION CONTROL G. Maria Priscilla 1 and C. P. Sumathi 2 1 S.N.R. Sons College (Autonomous), Coimbatore, India 2 SDNB Vaishnav College
Classification of Engineering Consultancy Firms Using Self-Organizing Maps: A Scientific Approach
International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol:13 No:03 46 Classification of Engineering Consultancy Firms Using Self-Organizing Maps: A Scientific Approach Mansour N. Jadid
Visualization of large data sets using MDS combined with LVQ.
Visualization of large data sets using MDS combined with LVQ. Antoine Naud and Włodzisław Duch Department of Informatics, Nicholas Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland. www.phys.uni.torun.pl/kmk
Online data visualization using the neural gas network
Online data visualization using the neural gas network Pablo A. Estévez, Cristián J. Figueroa Department of Electrical Engineering, University of Chile, Casilla 412-3, Santiago, Chile Abstract A high-quality
Analysis of Performance Metrics from a Database Management System Using Kohonen s Self Organizing Maps
WSEAS Transactions on Systems Issue 3, Volume 2, July 2003, ISSN 1109-2777 629 Analysis of Performance Metrics from a Database Management System Using Kohonen s Self Organizing Maps Claudia L. Fernandez,
A Computational Framework for Exploratory Data Analysis
A Computational Framework for Exploratory Data Analysis Axel Wismüller Depts. of Radiology and Biomedical Engineering, University of Rochester, New York 601 Elmwood Avenue, Rochester, NY 14642-8648, U.S.A.
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
INTRUSION DETECTION SYSTEM USING SELF ORGANIZING MAP
Acta Electrotechnica et Informatica No. 1, Vol. 6, 2006 1 INTRUSION DETECTION SYSTEM USING SELF ORGANIZING MAP Liberios VOKOROKOS, Anton BALÁŽ, Martin CHOVANEC Technical University of Košice, Faculty of
An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015
An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content
Data Clustering and Topology Preservation Using 3D Visualization of Self Organizing Maps
, July 4-6, 2012, London, U.K. Data Clustering and Topology Preservation Using 3D Visualization of Self Organizing Maps Z. Mohd Zin, M. Khalid, E. Mesbahi and R. Yusof Abstract The Self Organizing Maps
SPPA-D3000 Plant Monitor Technical Description
SPPA-D3000 Plant Monitor Technical Description Model-based monitoring and early fault detection for components and processes May 2008 Answers for energy. 1 Siemens AG 2008. All Rights Reserved Contents
Data Quality Mining: Employing Classifiers for Assuring consistent Datasets
Data Quality Mining: Employing Classifiers for Assuring consistent Datasets Fabian Grüning Carl von Ossietzky Universität Oldenburg, Germany, [email protected] Abstract: Independent
Comparing large datasets structures through unsupervised learning
Comparing large datasets structures through unsupervised learning Guénaël Cabanes and Younès Bennani LIPN-CNRS, UMR 7030, Université de Paris 13 99, Avenue J-B. Clément, 93430 Villetaneuse, France [email protected]
Integration of Process Simulation and Data Mining Techniques for the Analysis and Optimization of Process Systems. Balazs Balasko
Theses of the doctoral (PhD) dissertation Integration of Process Simulation and Data Mining Techniques for the Analysis and Optimization of Process Systems Balazs Balasko University of Pannonia PhD School
Is a Data Scientist the New Quant? Stuart Kozola MathWorks
Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by
Multivariate Tools for Modern Pharmaceutical Control FDA Perspective
Multivariate Tools for Modern Pharmaceutical Control FDA Perspective IFPAC Annual Meeting 22 January 2013 Christine M. V. Moore, Ph.D. Acting Director ONDQA/CDER/FDA Outline Introduction to Multivariate
Mobile Phone APP Software Browsing Behavior using Clustering Analysis
Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Mobile Phone APP Software Browsing Behavior using Clustering Analysis
ViSOM A Novel Method for Multivariate Data Projection and Structure Visualization
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002 237 ViSOM A Novel Method for Multivariate Data Projection and Structure Visualization Hujun Yin Abstract When used for visualization of
EVALUATION OF NEURAL NETWORK BASED CLASSIFICATION SYSTEMS FOR CLINICAL CANCER DATA CLASSIFICATION
EVALUATION OF NEURAL NETWORK BASED CLASSIFICATION SYSTEMS FOR CLINICAL CANCER DATA CLASSIFICATION K. Mumtaz Vivekanandha Institute of Information and Management Studies, Tiruchengode, India S.A.Sheriff
UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MS SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 1 EXAMINATION 2015/2016 INTELLIGENT SYSTEMS
TW72 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MS SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 1 EXAMINATION 2015/2016 INTELLIGENT SYSTEMS MODULE NO: EEM7010 Date: Monday 11 th January 2016
A Discussion on Visual Interactive Data Exploration using Self-Organizing Maps
A Discussion on Visual Interactive Data Exploration using Self-Organizing Maps Julia Moehrmann 1, Andre Burkovski 1, Evgeny Baranovskiy 2, Geoffrey-Alexeij Heinze 2, Andrej Rapoport 2, and Gunther Heidemann
Maschinelles Lernen mit MATLAB
Maschinelles Lernen mit MATLAB Jérémy Huard Applikationsingenieur The MathWorks GmbH 2015 The MathWorks, Inc. 1 Machine Learning is Everywhere Image Recognition Speech Recognition Stock Prediction Medical
Knowledge Discovery from patents using KMX Text Analytics
Knowledge Discovery from patents using KMX Text Analytics Dr. Anton Heijs [email protected] Treparel Abstract In this white paper we discuss how the KMX technology of Treparel can help searchers
Using Data Mining for Mobile Communication Clustering and Characterization
Using Data Mining for Mobile Communication Clustering and Characterization A. Bascacov *, C. Cernazanu ** and M. Marcu ** * Lasting Software, Timisoara, Romania ** Politehnica University of Timisoara/Computer
Advanced Web Usage Mining Algorithm using Neural Network and Principal Component Analysis
Advanced Web Usage Mining Algorithm using Neural Network and Principal Component Analysis Arumugam, P. and Christy, V Department of Statistics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu,
Load balancing in a heterogeneous computer system by self-organizing Kohonen network
Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.
Data Mining using Rule Extraction from Kohonen Self-Organising Maps
Data Mining using Rule Extraction from Kohonen Self-Organising Maps James Malone, Kenneth McGarry, Stefan Wermter and Chris Bowerman School of Computing and Technology, University of Sunderland, St Peters
Industrial Roadmap for Connected Machines. Sal Spada Research Director ARC Advisory Group [email protected]
Industrial Roadmap for Connected Machines Sal Spada Research Director ARC Advisory Group [email protected] Industrial Internet of Things (IoT) Based upon enhanced connectivity of this stuff Connecting
9. Text & Documents. Visualizing and Searching Documents. Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08
9. Text & Documents Visualizing and Searching Documents Dr. Thorsten Büring, 20. Dezember 2007, Vorlesung Wintersemester 2007/08 Slide 1 / 37 Outline Characteristics of text data Detecting patterns SeeSoft
Credit Card Fraud Detection Using Self Organised Map
International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 13 (2014), pp. 1343-1348 International Research Publications House http://www. irphouse.com Credit Card Fraud
What is Data Mining? Data Mining (Knowledge discovery in database) Data mining: Basic steps. Mining tasks. Classification: YES, NO
What is Data Mining? Data Mining (Knowledge discovery in database) Data Mining: "The non trivial extraction of implicit, previously unknown, and potentially useful information from data" William J Frawley,
INTERACTIVE DATA EXPLORATION USING MDS MAPPING
INTERACTIVE DATA EXPLORATION USING MDS MAPPING Antoine Naud and Włodzisław Duch 1 Department of Computer Methods Nicolaus Copernicus University ul. Grudziadzka 5, 87-100 Toruń, Poland Abstract: Interactive
Using Smoothed Data Histograms for Cluster Visualization in Self-Organizing Maps
Technical Report OeFAI-TR-2002-29, extended version published in Proceedings of the International Conference on Artificial Neural Networks, Springer Lecture Notes in Computer Science, Madrid, Spain, 2002.
Grid e-services for Multi-Layer SOM Neural Network Simulation
Grid e-services for Multi-Layer SOM Neural Network Simulation,, Rui Silva Faculdade de Engenharia 4760-108 V. N. Famalicão, Portugal {rml,rsilva}@fam.ulusiada.pt 2007 Outline Overview Multi-Layer SOM Background
14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)
Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,
Quality Assessment in Spatial Clustering of Data Mining
Quality Assessment in Spatial Clustering of Data Mining Azimi, A. and M.R. Delavar Centre of Excellence in Geomatics Engineering and Disaster Management, Dept. of Surveying and Geomatics Engineering, Engineering
2002 IEEE. Reprinted with permission.
Laiho J., Kylväjä M. and Höglund A., 2002, Utilization of Advanced Analysis Methods in UMTS Networks, Proceedings of the 55th IEEE Vehicular Technology Conference ( Spring), vol. 2, pp. 726-730. 2002 IEEE.
Exploratory Data Analysis with MATLAB
Computer Science and Data Analysis Series Exploratory Data Analysis with MATLAB Second Edition Wendy L Martinez Angel R. Martinez Jeffrey L. Solka ( r ec) CRC Press VV J Taylor & Francis Group Boca Raton
Network Intrusion Detection Systems
Network Intrusion Detection Systems False Positive Reduction Through Anomaly Detection Joint research by Emmanuele Zambon & Damiano Bolzoni 7/1/06 NIDS - False Positive reduction through Anomaly Detection
CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing
CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate
Sensory-motor control scheme based on Kohonen Maps and AVITE model
Sensory-motor control scheme based on Kohonen Maps and AVITE model Juan L. Pedreño-Molina, Antonio Guerrero-González, Oscar A. Florez-Giraldo, J. Molina-Vilaplana Technical University of Cartagena Department
Barcode Based Automated Parking Management System
IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 Barcode Based Automated Parking Management System Parth Rajeshbhai Zalawadia 1 Jasmin
NETWORK-BASED INTRUSION DETECTION USING NEURAL NETWORKS
1 NETWORK-BASED INTRUSION DETECTION USING NEURAL NETWORKS ALAN BIVENS [email protected] RASHEDA SMITH [email protected] CHANDRIKA PALAGIRI [email protected] BOLESLAW SZYMANSKI [email protected] MARK
Igniting the Next Industrial Revolution
Igniting the Next Industrial Revolution Defining an M2M Technology Platform for the Industrial Internet M2M Evolution Conference, 30 Jan 2014 Nikhil Chauhan Director Product Marketing, GE Software Sufficiently
Clustering. Data Mining. Abraham Otero. Data Mining. Agenda
Clustering 1/46 Agenda Introduction Distance K-nearest neighbors Hierarchical clustering Quick reference 2/46 1 Introduction It seems logical that in a new situation we should act in a similar way as in
COPYRIGHTED MATERIAL. Contents. List of Figures. Acknowledgments
Contents List of Figures Foreword Preface xxv xxiii xv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for
Ryan F. Schkoda, Ph.D. Postdoctoral Fellow Wind Turbine Drivetrain Testing Facility Charleston, SC
Systems Engineering Activities at Clemson University s International Center for Automotive Research (CU-ICAR) and Wind Turbine Drivetrain Testing Facility Ryan F. Schkoda, Ph.D. Postdoctoral Fellow Wind
How To Use A Fault Docket System For A Fault Fault System
Journal of Engineering and Applied Science Volume 4, December 2012 2012 Cenresin Publications www.cenresinpub.org APPLICATION OF NEURAL NETWORK TECHNIQUE TO TELECOMMUNICATION FAULT DOCKET SYSTEM 1 Okpeki
Using Predictive Analytics to Detect Fraudulent Claims
Using Predictive Analytics to Detect Fraudulent Claims May 17, 211 Roosevelt C. Mosley, Jr., FCAS, MAAA CAS Spring Meeting Palm Beach, FL Experience the Pinnacle Difference! Predictive Analysis for Fraud
Big Data Text Mining and Visualization. Anton Heijs
Copyright 2007 by Treparel Information Solutions BV. This report nor any part of it may be copied, circulated, quoted without prior written approval from Treparel7 Treparel Information Solutions BV Delftechpark
6.2.8 Neural networks for data mining
6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural
Big Data, Physics, and the Industrial Internet! How Modeling & Analytics are Making the World Work Better."
Big Data, Physics, and the Industrial Internet! How Modeling & Analytics are Making the World Work Better." Matt Denesuk! Chief Data Science Officer! GE Software! October 2014! Imagination at work. Contact:
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
TIETS34 Seminar: Data Mining on Biometric identification
TIETS34 Seminar: Data Mining on Biometric identification Youming Zhang Computer Science, School of Information Sciences, 33014 University of Tampere, Finland [email protected] Course Description Content
Models of Cortical Maps II
CN510: Principles and Methods of Cognitive and Neural Modeling Models of Cortical Maps II Lecture 19 Instructor: Anatoli Gorchetchnikov dy dt The Network of Grossberg (1976) Ay B y f (
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
Intrusion Detection. Jeffrey J.P. Tsai. Imperial College Press. A Machine Learning Approach. Zhenwei Yu. University of Illinois, Chicago, USA
SERIES IN ELECTRICAL AND COMPUTER ENGINEERING Intrusion Detection A Machine Learning Approach Zhenwei Yu University of Illinois, Chicago, USA Jeffrey J.P. Tsai Asia University, University of Illinois,
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
SYSTEMS, CONTROL AND MECHATRONICS
2015 Master s programme SYSTEMS, CONTROL AND MECHATRONICS INTRODUCTION Technical, be they small consumer or medical devices or large production processes, increasingly employ electronics and computers
VISUALIZATION OF GEOSPATIAL DATA BY COMPONENT PLANES AND U-MATRIX
VISUALIZATION OF GEOSPATIAL DATA BY COMPONENT PLANES AND U-MATRIX Marcos Aurélio Santos da Silva 1, Antônio Miguel Vieira Monteiro 2 and José Simeão Medeiros 2 1 Embrapa Tabuleiros Costeiros - Laboratory
Segmentation of stock trading customers according to potential value
Expert Systems with Applications 27 (2004) 27 33 www.elsevier.com/locate/eswa Segmentation of stock trading customers according to potential value H.W. Shin a, *, S.Y. Sohn b a Samsung Economy Research
ultra fast SOM using CUDA
ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected]
Machine Learning CS 6830 Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected] What is Learning? Merriam-Webster: learn = to acquire knowledge, understanding, or skill
