BRIDGES ARE relatively expensive but often are
|
|
|
- Frederica Reed
- 10 years ago
- Views:
Transcription
1 Chapter 10 Bridges Chapter 10 Bridges Bridg Bridges -- usually the best, but most expensive drainage crossing structure. Protect bridges against scour. BRIDGES ARE relatively expensive but often are the most desirable stream crossing structure because they can be constructed outside of the stream channel and thus minimize channel changes, excavation, or placement of fill in the natural channel. They minimize disturbance of the natural stream bottom and they do not require traffic delays once constructed. They are ideal for fish passage. They do require detailed site considerations and specific hydraulic analyses and structural design. Bridges should be designed to ensure that they have adequate structural capacity to support the heaviest anticipated vehicle or posted for load limits. Simple span bridges may be made of logs, timbers, glue-laminated wood beams, steel girders, railroad car beds, cast-in-place concrete slabs, prefabri- The bridge location and size should ideally be determined by an engineer, hydrologist, and fisheries biologist who are working together as a team. When possible, a bridge should be constructed at a narrow channel location and should be in an area of bedrock or coarse soil and rock for a bridge site with good foundation conditions. Many bridge failures occur due to foundations placed upon fine materials that are susceptible to scour. Photo 10.1 Culverts, fords, or bridges may be used for stream crossings. Use bridges to cross large permanent streams, minimize channel disturbance, and to minimize traffic delays. Use an opening wide enough to avoid constricting the natural channel. Locate the bridge foundation on bedrock or at an elevation below the anticipated depth of scour. LOW-VOLUME ROADS BMPS: 97
2 Figur igure 10.1 Cross-sections of typical types of bridges used on low-volume roads. Brow Log Brow Log Native Log Shot Rock Fill Liner 19mm Ø Cable Native Log Stringer Bridge Untreated Timber Running Surface Treated Timber Decking Steel Beam W Shape Stationary Diaphragm Movable Diaphragm Hamilton EZ Bridge (Modular) Stationary Diaphragm Untreated Timber Running Surface Treated Timber Decking Glulam Beam Metal Diaphragm Treated Timber Glue Laminated Bridge Prestressed Concrete Double-T Prestressed Concrete Single or Double-T Bridge LOW-VOLUME ROADS BMPS: 98
3 Photo 10.2 A bridge structure typically offers the best channel protection by staying out of the creek. Use local material for bridges as available, considering design life, cost, and maintenance. Inspect bridges regularly, and replace them when they are no longer structurally adequate. include simple log sills, gabions, masonry retaining walls, or concrete stem walls with footings. Some simple bridge foundation details are shown in Figure Deep foundations often use drilled piers or driven piles. Most bridge failures occur either because of inadequate hydraulic capacity (too small) or because of scour and undermining of a foundation placed upon fine soils (Photo 10.3). Thus, foundation considerations are critical. Since bridge structures are typically expensive, and sites may be complicated, most bridge designs should be done with input from experienced structural, hydraulic, and geotechnical engineers. cated concrete voided slabs or T beams, or using modular bridges such as Hamilton EZ or Bailey Bridges (see Figure 10.1). Many types of structures and materials are appropriate, so long as they are structurally designed (Photo 10.1). mind that they have relatively short spans and they have a relatively short design life (20-50 years) (Photo 10.2). Foundations for bridges may Periodic bridge inspection (every 2-4 years) and maintenance is needed to ensure that the structure is safe to pass the anticipated vehicles, that the stream channel is clear, and to maximize the de- Standard designs can be found for many simple bridges as a function of bridge span and loading conditions. Complex structures should be specifically designed by a structural engineer. Bridge designs often require the approval of local agencies or governments. Concrete structures are desirable because they can be relatively simple and inexpensive, require minimal maintenance, and have a relatively long design life (100+ years) in most environments. Log bridges are commonly used because of the availability of local materials, particularly in remote areas. However, keep in Photo 10.3 Scour is one of the most common causes of bridge failure. Use an opening wide enough to minimize constriction of the natural channel. Locate the bridge foundation on bedrock when possible, or below the depth of scour, and use stream bank protection measures such as riprap. LOW-VOLUME ROADS BMPS: 99
4 sign life of the structure. Typical bridge maintenance items include cleaning the deck and seats of the girders, clearing vegetation and debris from the stream channel, replacing object markers and signs, repairing stream bank protection measures, treating dry and checking wood, replacing missing nuts and bolts, and repainting the structure. PRACTICES TO AVOID Placing piers or footing in the active stream channel or mid-channel. Placing approach fill material in the drainage channel. Placing structural foundations on scour susceptible soil deposits such as silts and fine sands. Constricting or narrowing the width of the natural stream channel. RECOMMENDED PRACTICES Use an adequately long bridge span to avoid constricting the natural active (bankfull) flow channel. Minimize constriction of any overflow channel. Protect the upstream and downstream approaches to structures with wing walls, riprap, gabions, vegetation, or other slope protection where necessary (Photo 10.4). Place foundations onto nonscour susceptible material (ideally bedrock (Photo 10.5) or coarse rock) or below the expected maximum depth of scour. Prevent foundation or channel scour with the use of locally placed heavy riprap, gabion baskets, or concrete reinforcement. Use scour protection as needed. Locate bridges where the stream channel is narrow, straight, and uniform. Avoid placing abutments in the active stream channel. Where necessary, place inchannel abutments in a direction parallel to the stream flow. Consider natural channel adjustments and possible channel location changes over the design life of the structure. Channels that are sinuous, have meanders, or have broad flood plains may change location within that area of historic flow after a major storm event. For bridge abutments or footings placed on natural slopes, set the structure into firm natural ground (not fill material or loose soil) at least 0.5 to 2.0 meters deep. Use retaining structures as needed in steep, deep drainages to retain the approach fills, or use a relatively long bridge span (Figure 10.2). Design bridges for a 100- to 200-year storm flow. Expensive structures and structures with high impacts from failure, such as bridges, justify conservative designs. Allow for some freeboard, typically at least 0.5 to 1.0 meter, between the bottom of bridge girders and expected high water level and floating debris. Structures in a jungle environment with very high intensity rainfall may need additional freeboard. Alternatively, a bridge may be designed for overtopping, somewhat like a low water ford, and eliminate the need for freeboard, but increase the need for a erosion resistant deck and approach slabs (Photo 10.6). Perform bridge inspections every 2 to 4 years. Do bridge maintenance as needed to protect the life and function of the structure. LOW-VOLUME ROADS BMPS: 100
5 Figur igure 10.2 Bridge installation with simple foundation details. Install bottom of stringers at least.5 m above high water Install bottom of stringers at least 0.5 m above high water Typical Log Bridge Installation Ensure that the bridge has adequate flow capacity beneath the structure. Keep fill material and the abutments or footings out of the stream channel. Set footings into the streambank above the high water level or below the depth of scour if they are near the channel. Add protection against scour, such as riprap, gabions, or vegetation. Set the stringers or deck slab at least 0.5 to 2.0 meters above the expected high water level to pass storm flow plus debris. Bridge Abutment Detail Set bridge foundation (gabion abutment, footings, or logs) into rock or firm, stable soil. Set footings meters into firm material. Bridge Deck Roadbed Slab or Girder 1 m x 1 m Gabions or masonry abutment Logs Timber sill 1-2 m Set into firm soil 0.5 to 2.0 m Gabion Abutment m wide bench into firm soil (not fill) in front of abutments. Log Abutment LOW-VOLUME ROADS BMPS: 101
6 Photo 10.4 Concrete structures have a long design life and are typically very cost-effective for long bridge spans. Mediumlength structures often combine a concrete deck placed upon steel girders. Use bank protection, such as riprap, to protect the entrance and outlet of structures. Photo 10.5 Locate the bridge foundation on bedrock or on non-scour susceptible material when possible. When it is necessary to locate the bridge foundation on materials susceptible to scour, use a deep foundation or design the bridge with scour protection. Photo 10.6 Here is a well built treated timber bridge with good streambank protection and adequate span to minimize stream channel impacts. The freeboard is marginally adequate. LOW-VOLUME ROADS BMPS: 102
Safe & Sound Bridge Terminology
Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries
Chapter 3 CULVERTS. Description. Importance to Maintenance & Water Quality. Culvert Profile
Chapter 3 CULVERTS Description A culvert is a closed conduit used to convey water from one area to another, usually from one side of a road to the other side. Importance to Maintenance & Water Quality
CHAPTER 3A Environmental Guidelines for STREAM CROSSING BY ALL-TERRAIN VEHICLES
GOVERNMENT OF NEWFOUNDLAND AND LABRADOR DEPARTMENT OF ENVIRONMENT AND LABOUR CHAPTER 3A Environmental Guidelines for STREAM CROSSING BY ALL-TERRAIN VEHICLES WATER RESOURCES MANAGEMENT DIVISION Water Investigations
Design of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam
Design of Bridges Introduction 3 rd to 4 th July 2012 1 FUNCTION OF A BRIDGE To connect two communities which are separated by streams, river, valley, or gorge, etc. 2 EVOLUTION OF BRIDGES 1. Log Bridge
Outlet stabilization structure
Overview of Sedimentation and Erosion Control Practices Practice no. 6.41 Outlet stabilization structure Erosion at the outlet of channels, culverts, and other structures is common, and can cause structural
Emergency Spillways (Sediment basins)
Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]
How To Check For Scour At A Bridge
Case Studies Bridge Scour Inspection and Repair Edward P. Foltyn, P.E. Senior Hydraulic Engineer ODOT Bridge Unit 2013 PNW Bridge Inspectors Conference April 2013 REFERENCES Stream Stability at Highway
CITY UTILITIES DESIGN STANDARDS MANUAL
CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW9 June 2015 SW9.01 Purpose This Chapter provides information for the design of open channels for the conveyance of stormwater in the City of Fort Wayne.
June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL
7.0 7.1 GENERAL For the purpose of this manual, culverts are defined as structures that are completely surrounded by soil and located below the surface of the roadway parallel to the general direction
Crossing creeks Stream crossings on farms
Crossing creeks Stream crossings on farms Looking after all our water needs Crossing creeks Stream crossings on farms Looking after all our water needs Department of Water 168 St Georges Terrace Perth
THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS
Chapter 11 Slope Stabiliza bilization and Stability of Cuts and Fills THE OBJECTIVES OF ROUTINE ROAD CUTS AND FILLS are 1) to create space for the road template and driving surface; 2) to balance material
RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies.
RIPRAP From Massachusetts Erosion and Sediment Control Guidelines for Urban and Suburban Areas http://www.mass.gov/dep/water/laws/policies.htm#storm Definition: A permanent, erosion-resistant ground cover
Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1
6 Index inlet protection excavated drop inlet protection (Temporary) 6.50.1 HARDWARE CLOTH AND GRAVEL INLET PROTECTION Block and gravel inlet Protection (Temporary) sod drop inlet protection ROCK DOUGHNUT
Prattsville Berm Removal Project. 1.0 Project Location
Prattsville Berm Removal Project 1.0 Project Location The project site is located between the New York State Route 23 Bridge over the Schoharie Creek and the Schoharie Reservoir. The restoration plan encompassed
The unit costs are based on the trend line of the 3 low bids for the average quantity.
Page 1 of 8 COST ESTIMATE GENERAL INSTRUCTIONS The unit costs are based on the trend line of the 3 low bids for the average quantity. Apply the Unit Costs to ordinary structures. Unit Costs should generally
Stormwater/Wetland Pond Construction Inspection Checklist
: Construction Inspection ChecklistsTools Stormwater/Wetland Pond Construction Inspection Checklist Project: Location: Site Status: Date: Time: Inspector: SATISFACTORY/ UNSATISFACTORY COMMENTS Pre-Construction/Materials
Table 4.9 Storm Drain Inlet Protetion Applicable for
BMP C220: Storm Drain Inlet Protection Purpose To prevent coarse sediment from entering drainage systems prior to permanent stabilization of the disturbed area. Conditions of Use Type of Inlet Protection
General Permit for Activities Promoting Waterway - Floodplain Connectivity [working title]
General Permit for Activities Promoting Waterway - Floodplain Connectivity [working title] Purpose These rules set forth the conditions under which a person may, without an individual removal-fill permit
Welded Mesh Gabions and Mattresses River Protection Design Guide HY-TEN GABION SOLUTIONS Dunstall Hill Trading Estate, Gorsebrook Road,
Welded Mesh Gabions and Mattresses River Protection Design Guide HY-TEN GABION SOLUTIONS Dunstall Hill Trading Estate, Gorsebrook Road, Wolverhampton, WV6 0PJ Tel 01902 712200 Fax 01902 714096 e-mail [email protected]
National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination
Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)
BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM
BRIDGE RESTORATION AND LANDSLIDE CORRECTION USING STRUCTURAL PIER AND GRADE BEAM Swaminathan Srinivasan, P.E., M.ASCE H.C. Nutting/Terracon David Tomley, P.E., M.ASCE KZF Design Delivering Success for
2015 ODOT Bridge Design Conference May 12, 2014. DeJong Rd Bridge High- Seismic Zone Case Study: Bridge Rehab vs. Replacement.
2015 ODOT Bridge Design Conference May 12, 2014 DeJong Rd Bridge High- Seismic Zone Case Study: Bridge Rehab vs. Replacement Mary Ann Triska 2015 HDR, all rights reserved. Presentation Outline Project
Elevating Your House. Introduction CHAPTER 5
CHAPTER 5 Elevating Your House Introduction One of the most common retrofitting methods is elevating a house to a required or desired Flood Protection Elevation (FPE). When a house is properly elevated,
Mission Creek Flood Control & Restoration Project. City of Fremont, Alameda County
Mission Creek Flood Control & Restoration Project City of Fremont, Alameda County Agenda Background Why are proposed improvements necessary? Proposed project components Challenges Construction schedule/phasing
Scour and Scour Protection
Design of Maritime Structures Scour and Scour Protection Steven A. Hughes, PhD, PE Coastal and Hydraulics Laboratory US Army Engineer Research and Development Center Waterways Experiment Station 3909 Halls
How To Write A Watercourse Crossing
Code of Practice for Watercourse Crossings Made under the Water Act and the Water (Ministerial) Regulation Consolidated to include amendments in force as of June 24, 2013 Office Consolidation Published
Small Dam Hazard Assessment Inventory
Small Dam Hazard Assessment Inventory What would happen if your dam were to fail? This is a question that most dam owners hope they will never have to answer. However it is a question you, as a responsible
ENGINEERED FOUNDATIONS. Department of Public Works Jeff Hill, PE
ENGINEERED FOUNDATIONS Department of Public Works Jeff Hill, PE What is an engineered foundation. A Foundation Design Developed by a Trained Professional (Engineer) Types of Foundations (All of which can
Managing Our Water Retention Systems
Managing Our Water Retention Systems 29th Annual USSD Conference Nashville, Tennessee, April 20-24, 2009 Hosted by Corps of Engineers On the Cover Wolf Creek Dam is on the Cumberland River in South Central
Bridge Type Selection
Bridge Type Selection The major consideration for bridge type selection for bridges on the State Aid system is initial cost. Future maintenance costs, construction time, and location are considered when
Riprap-lined Swale (RS)
Riprap-lined Swale (RS) Practice Description A riprap-lined swale is a natural or constructed channel with an erosion-resistant rock lining designed to carry concentrated runoff to a stable outlet. This
Open Channel Flow in Aquaculture
SRAC Publication No. 74 Southern Regional Aquaculture Center March 1995 PR VI Open Channel Flow in Aquaculture J. David Bankston, Jr. 1 and Fred Eugene Baker Open channel flow of water has been used in
CITY OF TRAIL MEMORANDUM
0 C CITY OF TRAIL MEMORANDUM DATE: TO: FROM: SUBJECT: March 24, 2011 FILE NO. 5400-02 DAVID PEREHJJDOFF, CHIEF ADM1NTSTRATIVE OFFICER WARREN PROULX, ENGINEERING TECHMCIAN OLD TRAIL BRIDGE With the interest
IH-635 MANAGED LANES PROJECT, SEG. 3.2
IH-635 MANAGED LANES PROJECT, SEG. 3.2 Location: Dallas, Texas Owner: Texas Department of Transportation Client: Ferrovial Agroman Construction Cost: $1 Billion Construction Completion Date: December,
Emergency repair of Bridge B421
Emergency repair of Bridge B421 over the Olifants River after fl ood damage INTRODUCTION AND BACKGROUND Bridge B421 is located on the R555 at km 5.03 on Section 01E between Witbank (now known as emalahleni)
SEDIMENT/STORMWATER MANAGEMENT BASIN CONSTRUCTION CHECKLIST
SEDIMENT/STORMWATER MANAGEMENT BASIN CONSTRUCTION CHECKLIST For permanent structures per Delaware SCS Pond Code 378 and Delaware Sediment and Stormwater Regulations KEY PROJECT INFORMATION Item meets standard
Residential Foundations and Basements
Residential Foundations and Basements Disclaimer All of the following information is based on the 2006 International Residential Code with Kentucky Amendments. As some information is paraphrased, article
City of Shelbyville Site Inspection Checklist
City of Shelbyville Site Inspection Checklist General Information Project Name: KYR10 Permit Number: Date: Project Location: Contractor: Conractor Representative: Inspector's Name: Title: Signature : Weather
TYPES OF PIERS USED IN NORTH AND EAST TEXAS RESIDENTIAL FOUNDATION REPAIR
TYPES OF PIERS USED IN NORTH AND EAST TEXAS RESIDENTIAL FOUNDATION REPAIR If you listen to the hype, it sounds like there must be 20 or 30 different types of piers out there. Company A says they have an
Flash Flood Science. Chapter 2. What Is in This Chapter? Flash Flood Processes
Chapter 2 Flash Flood Science A flash flood is generally defined as a rapid onset flood of short duration with a relatively high peak discharge (World Meteorological Organization). The American Meteorological
Page & Turnbull imagining change in historic environments through design, research, and technology
DCI+SDE STRUCTURAL EVALUATIONS OFFICE BUILDING, TOOL SHED & WATER TANK, AND BLACKSMITH & MACHINE SHOP BUILDINGS SAN FRANCISCO, CALIFORNIA [14290] PRIMARY PROJECT CONTACT: H. Ruth Todd, FAIA, AICP, LEED
How To Prepare A Geotechnical Study For A Trunk Sewer Project In Lincoln, Nebraska
APPENDIX B Geotechnical Engineering Report GEOTECHNICAL ENGINEERING REPORT Preliminary Geotechnical Study Upper Southeast Salt Creek Sanitary Trunk Sewer Lincoln Wastewater System Lincoln, Nebraska PREPARED
Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation
Micropiles Reduce Costs and Schedule for Merchant RR Bridge Rehabilitation Jeff R. Hill, P.E. Hayward Baker Inc. 111 W. Port Plaza Drive Suite 600 St. Louis, MO 63146 314-542-3040 [email protected]
APPENDIX F. RESIDENTIAL WATER QUALITY PLAN: ALLOWABLE BMP OPTIONS
APPENDIX F. RESIDENTIAL WATER QUALITY PLAN: ALLOWABLE BMP OPTIONS The following section provides descriptions, advantages, limitations, and schematics of allowable best management practices (BMPs) for
1. Carry water under the canal 2. Carry water over the canal 3. Carry water into the canal
Lecture 21 Culvert Design & Analysis Much of the following is based on the USBR publication: Design of Small Canal Structures (1978) I. Cross-Drainage Structures Cross-drainage is required when a canal
Land Disturbance, Erosion Control and Stormwater Management Checklist. Walworth County Land Conservation Department
Land Disturbance, Erosion Control and Stormwater Management Checklist Walworth County Land Conservation Department The following checklist is designed to assist the applicant in complying with the Walworth
SE-10 STORM DRAIN INLET PROTECTION. Objectives
STORM DRAIN INLET PROTECTION SE-10 Objectives Erosion Control - EC Sediment Control - SE Tracking Control - TC Wind Erosion Control - WE Non-Storm Water Management - NS Waste and Materials Management -
Report to INFRASTRUCTURE SERVICES Committee for noting
15-377 Subject: Prepared by: Capital Works Programme 2015/16 Tairāwhiti Roads Alexios Kavallaris (Capital Manager - Tairāwhiti Roads) Meeting Date: 22 October 2015 Report to INFRASTRUCTURE SERVICES Committee
CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow
CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented
SECTION 6A STORM DRAIN DESIGN Mar. 2002 S E C T I O N 6A STORM DRAIN - DESIGN
S E C T I O N 6A STORM DRAIN - DESIGN 6A.l Scope 6A.2 Storm Water Quantity 6A.3 Storm Drain Hydraulics 6A.4 Depths 6A.5 Locations 6A.6 Curved Storm Drains 6A.7 Manholes 6A.8 Catch basins 6A.9 Storm Drain
Storm Drain Inlet Protection for Construction Sites (1060)
Storm Drain Inlet Protection for Construction Sites (1060) Wisconsin Department of Natural Resources Conservation Practice Standard I. Definition A temporary device installed in or around a storm drain
Assessing Rivers for Restoration Purposes. Ann L. Riley Waterways Restoration Institute
Assessing Rivers for Restoration Purposes Ann L. Riley Waterways Restoration Institute Assessing Rivers for Restoration Purposes Ann L. Riley Waterways Restoration Institute Assessing Rivers for Restoration
Homeowner s Guide to Drainage
Homeowner s Guide to Drainage a scottsdale homeowner s guide to drainage produced by the city of scottsdale s stormwater management division Transportation Department TABLE OF CONTENTS Introduction 2 Drainage
SECTION 5. Sediment Control Measures
SECTION 5 Sediment Control Measures 60. STORM DRAIN INLET PROTECTION When Runoff from earth change activities will discharge to a catch basin or storm drain inlet. A newly constructed catch basin or storm
Module 3. Irrigation Engineering Principles. Version 2 CE IIT, Kharagpur
Module 3 Irrigation Engineering Principles Lesson 9 Regulating Structures for Canal Flows Instructional objectives On completion of this lesson, the student shall be able to learn: 1. The necessity of
Construction Site Inspection Checklist for OHC000004 By making use of some simple Best Management Practices (BMPs) a construction site operator can
Construction Site Inspection Checklist for OHC000004 By making use of some simple Best Management Practices (BMPs) a construction site operator can do his or her share to protect Ohio's water resources
6 RETROFITTING POST & PIER HOUSES
Retrofitting Post & Pier Houses 71 6 RETROFITTING POST & PIER HOUSES by James E. Russell, P.E. 72 Retrofitting Post & Pier Houses Retrofitting Post & Pier Houses 73 RETROFITTING POST AND PIER HOUSES This
Permeable Pavement Construction Guide
Permeable Pavement Construction Guide Permeable pavement at Olympic Park, Waitakere Final Construction result What are permeable pavements? Permeable pavements are hard surface paving systems that reduce
Local Road Assessment and Improvement Drainage Manual
Local Road Assessment and Improvement Drainage Manual Donald Walker, T.I.C. Director, author Lynn Entine, Entine & Associates, editor Susan Kummer, Artifax, design Transportation Information Center University
EFFECTIVE FEBRUARY 2014. note: drainage permit required to call for a dampproof inspection
EFFECTIVE FEBRUARY 2014 note: drainage permit required to call for a dampproof inspection 1. ROOF DRAINS/DECK DRAINS (INTERIOR ) All roof and deck drains within the perimeter of the building shall be APPROVED
Table of Contents. July 2015 12-1
Table of Contents 12.1 General... 3 12.2 Abutment Types... 5 12.2.1 Full-Retaining... 5 12.2.2 Semi-Retaining... 6 12.2.3 Sill... 7 12.2.4 Spill-Through or Open... 7 12.2.5 Pile-Encased... 8 12.2.6 Special
Architectural Processing and Inspections for Home Mortgage Insurance
Page 1 of 5 [Text Only] Architectural Processing and Inspections for Home Mortgage Insurance Directive Number: 4145.1 SITE GRADING AND DRAINAGE GUIDELINES Construction complaints and structural defect
Appendix C. Project Opportunities. Middle Twisp River (RM 7.8 18.12)
Appendix C Project Opportunities Middle Twisp River (RM 7.8 18.12) This table describes project opportunities by project area. Locator maps of the project opportunities are included below the table. Reach
EPR Exempt Flood Risk Activities: descriptions and conditions
EPR Exempt Flood Risk Activities: descriptions and conditions Version 1 April 2016 We are the Environment Agency. We protect and improve the environment. Acting to reduce the impacts of a changing climate
Lecture 24 Flumes & Channel Transitions. I. General Characteristics of Flumes. Flumes are often used:
Lecture 24 Flumes & Channel Transitions I. General Characteristics of Flumes Flumes are often used: 1. Along contours of steep slopes where minimal excavation is desired 2. On flat terrain where it is
Introduction to Minimal Excavation Foundations
Introduction to Minimal Excavation Foundations What is a minimal excavation foundation? A construction technique that minimizes disturbance of the natural soil profile within the footprint of the structure
Topic 8: Open Channel Flow
3.1 Course Number: CE 365K Course Title: Hydraulic Engineering Design Course Instructor: R.J. Charbeneau Subject: Open Channel Hydraulics Topics Covered: 8. Open Channel Flow and Manning Equation 9. Energy,
Open Channel Flow 2F-2. A. Introduction. B. Definitions. Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow
Design Manual Chapter 2 - Stormwater 2F - Open Channel Flow 2F-2 Open Channel Flow A. Introduction The beginning of any channel design or modification is to understand the hydraulics of the stream. The
COLORADO DEPARTMENT OF TRANSPORTATION STORMWATER FIELD INSPECTION REPORT - ACTIVE CONSTRUCTION
COLORADO DEPARTMENT OF TRANSPORTATION STORMWATER FIELD INSPECTION REPORT - ACTIVE CONSTRUCTION (1) Project Name: (2) Project Contractor: (3) Erosion Control Supervisor/SWMP Administrator: (4) CDOT Project
Rehabilitation of the Red Bank Road Bridge over Hoover Reservoir. Presented By: Doug Stachler, P.E.
Rehabilitation of the Red Bank Road Bridge over Hoover Reservoir Presented By: Doug Stachler, P.E. Project Organization Owner Delaware County Engineers Office Design Consultant CH2M HILL Contractor Double
Moving Small Mountains Vesuvius Dam Rehab
Moving Small Mountains Vesuvius Dam Rehab Susan L. Peterson, P.E., regional dams engineer, Eastern Region, Bedford, IN Note: The following article, Moving Small Mountains Vesuvius Dam Rehab, by Sue Peterson,
symptoms of a faulty foundation
symptoms of a faulty foundation How does drought impact your home's foundation? For many Texas families, their home becomes the single largest investment and also the family fortune. The home's foundation
Vehicle Tracking Pad
Stormwater Quality Best Management Practices Construction Sites s When to use: Where construction vehicles leave active construction areas onto surfaces where runoff is not checked by sediment controls
Improving the flood resistance of your home. Advice sheet 6: Flood-resilient floors
Improving the flood resistance of your home Advice sheet 6: Flood-resilient This sheet provides guidance on identifying different types of floor, assessing the routes floodwater may enter, and describes
The Basics of Chapter 105 Waterways and Wetlands Permitting in PA
The Basics of Chapter 105 Waterways and Wetlands Permitting in PA April 17, 2013 Goal To develop a basic understanding of PA Department of Environmental Protection (DEP) and US Army Corps of Engineers
Unit Price Averages Reports
Unit Price Averages Reports 12/7/2015 UNIT PRICE AVERAGES REPORT Disclaimer The information provided in the following Unit Price Averages Report is only for the use of Alberta Infrastructure & Transportation
CHAPTER 860 OPEN CHANNELS
HIGHWAY DESIGN MANUAL 860-1 CHAPTER 860 OPEN CHANNELS Topic 861 - General Index 861.1 - Introduction An open channel is a conveyance in which water flows with a free surface. Although closed conduits such
Analysis of the Interstate 10 Twin Bridge s Collapse During Hurricane Katrina
Analysis of the Interstate 0 Twin Bridge s Collapse During Hurricane Katrina By Genda Chen, Emitt C. Witt III, David Hoffman, Ronaldo Luna, and Adam Sevi The Interstate 0 Twin Span Bridge over Lake Pontchartrain
CHAPTER 9 CULVERTS 2005
CHAPTER 9 CULVERTS 2005 Culverts 9-1 Chapter Table of Contents 9.1 - Introduction 9-5 9.2 - Policy and Practice 9-5 9.3 - Large, Medium and Small Culverts 9-8 9.4 - Sources of Information 9-8 9.5 - Culvert
EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015
EXAMPLES (OPEN-CHANNEL FLOW) AUTUMN 2015 Normal and Critical Depths Q1. If the discharge in a channel of width 5 m is 20 m 3 s 1 and Manning s n is 0.02 m 1/3 s, find: (a) the normal depth and Froude number
INCREASE OF DURABILITY AND LIFETIME OF EXISTING BRIDGES. PIARC TC 4.4 EXPERIENCE.
INCREASE OF DURABILITY AND LIFETIME OF EXISTING BRIDGES. PIARC TC 4.4 EXPERIENCE. M.Sc. Gediminas Viršilas Head of Bridge Division, Lithuanian Road Administration Working group 2 of PIARC Technical Committee
CLIFTY CREEK PLANT MADISON, INDIANA
2015 DAM AND DIKE INSPECTION REPORT GERS-15-018 CLIFTY CREEK PLANT MADISON, INDIANA PREPARED BY GEOTECHNICAL ENGINEERING AEP SERVICE CORPORATION 1 RIVERSIDE PLAZA COLUMBUS, OHIO Annual Dam and Dike Inspection
APPLICATION PROCEDURES FOR PLACEMENT OF UNDERGROUND TELECOMMUNICATION CABLES IN THE VICINITY OF TRANSPORTATION FACILITIES
APPLICATION PROCEDURES FOR PLACEMENT OF UNDERGROUND TELECOMMUNICATION CABLES IN THE VICINITY OF TRANSPORTATION FACILITIES UNDER THE JURISDICTION OF ALBERTA TRANSPORTATION 1.0 Application Procedures 2.0
Ruby River Grayling - Gravel Spawning Beds Monitoring Report January 2008
Ruby River Grayling - Gravel Spawning Beds Monitoring Report January 2008 In partnership with Montana Department of Fish, Wildlife, and Parks (FWP), American Wildlands, and Wildlife Forever, the Madison
Bridge Office Policies and Procedures BOPP 2014
Bridge Office Policies and Procedures BOPP 2014 Nebraska Department of Roads Bridge Division Last updated: October 2014 Introduction Page I Purpose The BRIDGE OFFICE POLICIES AND PROCEDURES manual (BOPP)
Engineering in the water environment: good practice guide. River crossings
Engineering in the water environment: good practice guide River crossings Second edition, November 2010 Contents 1 Introduction 3 2 Impacts of crossings 5 2.1 Construction phase impacts 5 2.2 Barrier to
Minimizes sediment and debris from entering storm drains that lead to waterways and watercourses.
4.5-p DRAIN INLET PROTECTION Alternative Names: DI protection, Drop Inlet Protection DESCRIPTION Storm drain inlet (DI) protection slows and ponds stormwater, and filters sediment and debris before it
CHAPTER 5 OPEN CHANNEL HYDROLOGY
5.4 Uniform Flow Calculations 5.4.1 Design Charts CHAPTER 5 OPEN CHANNEL HYDROLOGY Following is a discussion of the equations that can be used for the design and analysis of open channel flow. The Federal
Pervious Pavers. By: Rich Lahren. Hebron Brick & Block Supply
Pervious Pavers By: Rich Lahren Hebron Brick & Block Supply Stormwater Management and Control Issues Past emphasis was on flood control Today s emphasis is also on pollution More impermeable areas are
STORMWATER MANAGEMENT CHECKLIST
STORMWATER MANAGEMENT CHECKLIST *This checklist must be completed and part of the Land Disturbing Permit submittal for review if the acreage disturbed is one (1) acre or more: I. SUPPORTING DATA Narrative
BMP-7. A sediment filter or an excavated impounding area around a storm drain drop inlet or curb inlet.
BMP-7 BMP: STORM DRAIN INLET PROTECTION Definition A sediment filter or an excavated impounding area around a storm drain drop inlet or curb inlet. To prevent sediment from entering storm drainage systems
Storm Drain Inlet Protection
Objectives EC Erosion Control SE Sediment Control TR Tracking Control WE Wind Erosion Control Non-Stormwater NS Management Control Waste Management and WM Materials Pollution Control Legend: Primary Objective
Note: All dimensions are nominal. All weights are for shipping purposes only. Availability is subject to change.
CHANNEL DrAiNS Durable Designed for maximum durability and drainage, NDS Channel Drains are a proven alternative to traditional concrete drains. UV inhibitors in the grates, channel and component parts
CHALLENGES AND INNOVATIVE SOLUTIONS FOR BRIDGE FOUNDATION REPAIRS
CHALLENGES AND INNOVATIVE SOLUTIONS FOR BRIDGE FOUNDATION REPAIRS Drew Monnier 1, P.Eng. (Presenting) Kimberly Yathon 2, B.Sc. CE (Presenting) Ruth Eden 1, M.Sc., P.Eng. Randy Fingas 1, P.Eng. Emile Shehata
TABLE OF CONTENTS. Section / Article Page
TABLE OF CONTENTS Section / Article Page 1. INTRODUCTION 1.1 Purpose................ 6 1.2 Definitions................ 6 1.3 Guidelines and References............ 7 2. AGREEMENTS 2.1 Applicant and Contractor
Block and Gravel Inlet Protection (BIP)
Block and Gravel Inlet Protection (BIP) Practice Description Block and gravel inlet protection is a sediment control barrier formed around a storm drain inlet by the use of standard concrete block and
