CHAPTER 15 FORCE, MASS AND ACCELERATION
|
|
|
- Maude Freeman
- 9 years ago
- Views:
Transcription
1 CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car is 800 kg. Initial velocity, v = 0 Final velocity, v = Time, t = 4 s Since v = v + at then acceleration, a = Hence, accelerating force, F = ma = km m h = 5.78 m/s h km 3600s v v m / s = = t 800kg.09m / s = 873 N. The brakes are applied on the car in question when travelling at 55 km/h and it comes to rest uniformly in a distance of 50 m. Calculate the braking force and the time for the car to come to rest. Initial velocity, v = 55 km/h = = 5.78 m/s (from above) Final velocity, v = 0 Distance travelled, s = 50 m v = v + as from which, acceleration, a = v v = =.33m / s s 50 Hence, braking force, F = ma = 800 kg.334 m/s = 867 N =.87 kn v v Since v = v + at then time to come to rest, t = = = 6.55 s a.334 6
2 3. The tension in a rope lifting a crate vertically upwards is.8 kn. Determine its acceleration if the mass of the crate is 70 kg. T mg = ma i.e = 70 a from which, acceleration, a = = m/s 4. A ship is travelling at 8 km/h when it stops its engines. It drifts for a distance of 0.6 km and its speed is then 4 km/h. Determine the value of the forces opposing the motion of the ship, assuming the reduction in speed is uniform and the mass of the ship is 000 t. Initial velocity, v = 8 km/h = Final velocity, v = km m h = = 5 m/s h km 3600s 3.6 = m/s Distance travelled, s = 0.6 km = 600 m v = v + as from which, acceleration, a = v v = = m / s s Hence, force opposing motion, F = ma = kg m / s 3 = 6459 N = 6.5 kn 5. A cage having a mass of t is being lowered down a mineshaft. It moves from rest with an acceleration of 4 m/s, until it is travelling at 5 m/s. It then travels at constant speed for 700 m and finally comes to rest in 6 s. Calculate the tension in the cable supporting the cage during (a) the initial period of acceleration, (b) the period of constant speed travel, (c) the final retardation period. 7
3 (a) Initial tension in cable, T = mg ma = m(g a) = 000(9.8 4) = 60 N =.6 kn (b) Tension in cable during constant speed, T = mg m a = mg 0 = (c) Tension in retardation period, T 3 = mg m a 3 = 960 N = 9.6 kn where a 3 = v u 0 5 = =.5m / s t 6 Hence, tension, T 3 = mg m a 3 = (-.5) = 460 N = 4.6 kn 6. A miner having a mass of 80 kg is standing in the cage of problem 5. Determine the reaction force between the man and the floor of the cage during (a) the initial period of acceleration, (b) the period of constant speed travel, and (c) the final retardation period. (a) Reaction during initial acceleration = mg m a = m(g a ) = 80(9.8 4) = N (b) Reaction during constant speed = mg m a = mg 0 = = N (c) Reaction in retardation period = mg m a 3 = 80( ) = 80 ( ) = N 7. During an experiment, masses of 4 kg and 5 kg are attached to a thread and the thread is passed over a pulley so that both masses hang vertically downwards and are at the same height. When the system is released, find (a) the acceleration of the system, and (b) the tension in the thread, assuming no losses in the system. Let m = 4 kg and m = 5 kg 8
4 Consider the motion of mass m m g T = m a i.e. 5g T = 5a from which, a = 5g T g T = () 5 5 Consider the motion of mass m T - m g = m a T mg T 4g T from which, a = = = g () m 4 4 Equating equations () and () gives: T g = T g 5 4 i.e. g = T T 5T + 4T 9T + = = i.e. 9T 0 = 9.8 and tension in thread, T = = 43.6 N From (), acceleration, a = T 43.6 g = 9.8 = m/s 9
5 EXERCISE 84, Page 93. Calculate the centripetal force acting on a vehicle of mass tonne when travelling round a bend of radius 5 m at 40 km/h. If this force should not exceed 750 N, determine the reduction in speed of the vehicle to meet this requirement. Centripetal acceleration = v r where v = km m h =. m/s and r = 5 m h km 3600s Hence, centripetal acceleration, a =. 5 = m/s Centripetal force = ma = 000 kg m/s = 988 N If centripetal force 750 N ma then a = 750 N v = 0.75m / s = 000 kg r i.e. v = and v = = 9.68 m/s 9.68 m/s = m km 3600s 9.68 = km/h s 000m h Hence the speed reduces form 40 km/h to km/h. A speed-boat negotiates an S-bend consisting of two circular arcs of radii 00 m and 50 m. If the speed of the boat is constant at 34 km/h, determine the change in acceleration when leaving one arc and entering the other. 34 km/h = km 000 m h 34 = m/s h km 3600s Acceleration, v a = = = 0.89m / s r 00 30
6 Acceleration, a v = = = 0.595m / s r 50 Change of acceleration = a a = = 0.96 m/s i.e. change in acceleration = 0.3 m/s 3. An object is suspended by a thread 400 mm long and both object and thread move in a horizontal circle with a constant angular velocity of 3.0 rad/s. If the tension in the thread is 36 N, determine the mass of the object. Centripetal force (i.e. tension in thread) = mv r = 36 N The angular velocity, ω = 3.0 rad/s and radius, r = 400 mm = 0.4 m. Since linear velocity v = ωr, v = =. m/s, and since F = mv r Fr, then m = v i.e. mass of object, m = = 0 kg. 3
7 EXERCISE 85, Page 95. Calculate the mass moment of inertia of a thin rod, of length 0.5 m and mass 0. kg, about its centroid. Mass moment of inertia of a thin rod about its centroid, I = ml = = kg m or kg m. Calculate the mass moment of inertia of the thin rod of Problem, about an end. Mass moment of inertia of a thin rod about an end, I = ml = = kg m Calculate the mass moment of inertia of a solid disc of uniform thickness about its centroid. The diameter of the disc is 0.3 m and its thickness is 0.08 m. The density of its material of construction is 7860 kg/m 3. Mass moment of inertia of a solid disc of uniform thickness about its centroid, I = R ρπ R t = 7860kg / m π = 0.50 kg m 4. If a hole of diameter 0. m is drilled through the centre of the disc of Problem 3, what will be its mass moment of inertia about its centroid? Mass moment of inertia of a solid disc of uniform thickness about its centroid, I = ( ) ( ) R + R 3 ( ) ρπ R R t = 7860 kg / m π ( ) 0.08 = 0.40 kg m 3
8 EXERCISE 86, Page 95 Answers found from within the text of the chapter, pages 88 to 94. EXERCISE 87, Page 95. (c). (b) 3. (a) 4. (d) 5. (a) 6. (b) 7. (b) 8. (a) 9. (a) 0. (d). (d). (c) 3. (b) 33
SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.
SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the
Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s
Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to
PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
PHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
Rotational Inertia Demonstrator
WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended
3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are
Hand Held Centripetal Force Kit
Hand Held Centripetal Force Kit PH110152 Experiment Guide Hand Held Centripetal Force Kit INTRODUCTION: This elegantly simple kit provides the necessary tools to discover properties of rotational dynamics.
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
Solution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
Torque and Rotary Motion
Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,
Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
Columbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
Angular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-
PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013
PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.
Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.
Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.
Lab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125
11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
Physics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the
HW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set II page 1 of 9 4-50 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco
So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.
Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.
Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
Work, Energy and Power
Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE
SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE This work coers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems C10 Engineering Science. This tutorial examines
Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2
Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.
Center of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
Unit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6
Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
Rotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
Chapter 4: Newton s Laws: Explaining Motion
Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state
Physics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
Lecture Presentation Chapter 7 Rotational Motion
Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class
Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
Serway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
Physics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the
5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
Chapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
Two-Body System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
EXPERIMENT: MOMENT OF INERTIA
OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in
AP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
Centripetal force, rotary motion, angular velocity, apparent force.
Related Topics Centripetal force, rotary motion, angular velocity, apparent force. Principle and Task A body with variable mass moves on a circular path with ad-justable radius and variable angular velocity.
Physics 1401 - Exam 2 Chapter 5N-New
Physics 1401 - Exam 2 Chapter 5N-New 2. The second hand on a watch has a length of 4.50 mm and makes one revolution in 60.00 s. What is the speed of the end of the second hand as it moves in uniform circular
v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
AP Physics: Rotational Dynamics 2
Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
Exam 1 Review Questions PHY 2425 - Exam 1
Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
XI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
F f v 1 = c100(10 3 ) m h da 1h 3600 s b =
14 11. The 2-Mg car has a velocity of v 1 = 100km>h when the v 1 100 km/h driver sees an obstacle in front of the car. It takes 0.75 s for him to react and lock the brakes, causing the car to skid. If
Physics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES
SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 4. On completion of this tutorial
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. (Use g = 9.8 m/s2.) 1) A 21 kg box must be slid across the floor. If
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
Uniform Circular Motion III. Homework: Assignment (1-35) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout)
Double Date: Objective: Uniform Circular Motion II Uniform Circular Motion III Homework: Assignment (1-35) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout) AP Physics B
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
Chapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary.
Chapter 9 9.2 Figure 9-37 shows a three particle system with masses m 1 3.0 kg, m 2 4.0 kg, and m 3 8.0 kg. The scales are set by x s 2.0 m and y s 2.0 m. What are (a) the x coordinate and (b) the y coordinate
Conceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
Chapter 8: Rotational Motion of Solid Objects
Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be
Newton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
Mechanical Principles
Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient
PHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
Supplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:
RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law
Candidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
Charged Particle in a Magnetic Field
Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field with its velocity perpendicular to the field The force is always directed toward the center of the circular
Acceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
Rotational Motion: Moment of Inertia
Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body
B) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
Practice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that
SOLUTIONS TO CONCEPTS CHAPTER 15
SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L
SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM
SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM This work covers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems, C05 Mechanical and
Determination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles.
SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. On completion of this tutorial you should be able to
W i f(x i ) x. i=1. f(x i ) x = i=1
Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt
Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
Tennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
